
Towards Modeling Student Engagement with Interactive
Computing Textbooks: An Empirical Study

David H. Smith IV
University of Illinois
Urbana-Champaign

dhsmith2@illinois.edu

Qiang Hao
Western Washington University

qiang.hao@wwu.edu

Christopher D. Hundhausen
Washington State University

hundhaus@wsu.edu

Filip Jagodzinski
Western Washington University

jagodzf@wwu.edu

Josh Myers-Dean
Western Washington University

myersdj@wwu.edu

Kira Jaeger
Western Washington University

jaegerk2@wwu.edu

ABSTRACT
Interactive textbooks have great potential to increase student en-
gagement with the course content which is critical to effective learn-
ing in computing education. Prior research on digital textbooks
and interactive visualizations contributes to our understanding
of student interactions with visualizations and modeling textbook
knowledge concepts. However, research investigating student usage
of interactive computing textbooks is still lacking. This study seeks
to fill this gap by modeling student engagement with a Jupyter-
notebook-based interactive textbook. Our findings suggest that
students’ active interactions with the presented interactive text-
book, including changing, adding, and executing code in addition to
manipulating visualizations, are significantly stronger in predicting
student performance than conventional reading metrics. Our find-
ings contribute to a deeper understanding of student interactions
with interactive textbooks and provide guidance on the effective
usage of said textbooks in computing education.

CCS CONCEPTS
• Social and professional topics → Computing education;

KEYWORDS
Jupyter notebook, interactive textbook, visualization, learning ana-
lytics, interaction behavior modeling

ACM Reference Format:
David H. Smith IV, Qiang Hao, Christopher D. Hundhausen, Filip Jagodzin-
ski, Josh Myers-Dean, and Kira Jaeger. 2021. Towards Modeling Student
Engagement with Interactive Computing Textbooks: An Empirical Study.
In Proceedings of the 52nd ACM Technical Symposium on Computer Science
Education (SIGCSE ’21), March 13–20, 2021, Virtual Event, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3408877.3432361

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE ’21, March 13–20, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8062-1/21/03. . . $15.00
https://doi.org/10.1145/3408877.3432361

1 INTRODUCTION
Computing educators have long shared the vision of an interactive
textbook platform that seamlessly integrates images, executable
code, visualizations, and assessment components. This can be at-
tributed to the field’s emphasis on hands-on practice [1–4] and
requirement for students to constantly solve problems through pro-
gramming. These tasks require students to bridge the intellectual
gap between the abstract concepts they learn in class and their
concrete implementations, [5, 6], a task with which novices in par-
ticular have difficulty [7, 8]. Presenting both abstract and concrete
information in a tightly integrated, interactive form is done with
the intent of allowing students to learn these relationships through
experimentation with interactive elements.

Though textbooks have long existed as a reliable learning re-
source it was not until recently that technologies mature enough
to support interactive textbooks emerged [9]. Tools such as com-
putational notebooks make the integration of static and dynamic
elements seamless and streamline the process of creating such doc-
uments. A computational notebook is a document that can be read
like a regular book chapter and executed like a computer program
[10, 11]. The executable code can be used to generate a variety
of other elements, such as mathematical formulas, dynamic visu-
alizations, multiple-choice questions, and code writing exercises.
Although computational notebooks themselves are far from new,
their adoption as platforms for educational content delivery is a
recent occurrence [12].

Much of the prior work on digital textbooks and interactive
visualizations are relevant to investigations on interactive comput-
ing textbooks. Some notable points of focus include comparing
the mediums of textbooks (e.g digital vs paper), modeling text-
book knowledge concepts, modeling student reading patterns, and
investigating student engagement with interactive visualizations
[5, 6, 13–16]. These efforts contribute to our understanding of how
to build adaptive learning modules, promote personalized learning,
and examine techniques that model student reading. The research
on student engagement with visualizations laid the foundation for
investigating student engagement with interactive learning ele-
ments in the context of computing education [1].

Despite the contributions of prior studies, research that inves-
tigates student usage of interactive computing textbooks is still
lacking. Prior studies on digital textbooks were typically agnos-
tic to discipline when modeling student reading behaviors which
did not account for the hands-on nature of computing education

Paper Session: Student Motivation SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

914

https://doi.org/10.1145/3408877.3432361
https://doi.org/10.1145/3408877.3432361

[15, 17]. Previous investigations into interactive textbooks failed to
engage in a fine-grained analysis of student interactions and their
relationship with student learning outcomes [18, 19].

This study seeks to fill this gap by modeling student engagement
with an interactive textbook that allows students to fully engage
with and modify all interactive and static components. The results
of this study contribute to a deeper understanding of (1) how stu-
dents engage with interactive textbooks through reading and rich
interactions, and (2) how students perceive the functionalities of
interactive computing textbooks. Our findings shed light on how
students engage with a fully interactive textbook, as well as inform
computing educators of the effective usage of interactive computing
textbooks.

2 BACKGROUND
2.1 Early Digital Textbooks
Early studies on digital textbooks focused on comparing the im-
pacts of different mediums of textbooks (digital vs paper) on stu-
dent learning [20, 21]. Findings showed that, regardless of medium,
reading textbooks have been found to have positive impacts on
student academic success [13, 20, 22–24]. Modeling reading pat-
terns makes it possible to understand student reading behavior,
which contributes to identifying gaps in student knowledge and
recommending appropriate learning resources.

Research on modeling knowledge components in textbooks and
student reading behaviors mainly focused on data that are rele-
vant to passive reading, such as reading speed, jumping to the next
page, and annotations [17]. However, reading speed as a metric
for modeling reading has been found to have a weak relationship
with student performance suggesting it may not be an accurate
measure of learning [15]. Additionally, digital textbooks are becom-
ing increasingly interactive, allowing a variety of heterogeneous
activities such as quizzes, dynamic visualizations, and even problem-
solving activities. These interactive activities are becomming an
integral componenet of digital textbooks in many disciplines, such
as computing education.

2.2 Interactive Visualization in Computing
Education

Computer-based dynamic visualization as a medium for teaching
has enjoyed a long history in computing and general STEM edu-
cation with the earliest examples dating back to the 1980s [25, 26].
Interactive visualizations still enjoy wide popularity in computing
education today as a method of providing a concrete, visual repre-
sentation of otherwise abstract concepts [6]. They have also been
shown to have positive effects on students in terms of performance,
motivation, and engagement [27–29].

Researchers have sought to understand how students interact
with visualizations systematically. Naps et al. [30] adapted the
Bloom’s Taxonomy [31] and defined an engagement taxonomy
(ET) consisting of 5 levels: (1) No viewing - visualization is not used,
(2) Viewing - visualization is watched, (3) Responding - questions
related to visualization are answered, (4) Changing - different input
data is provided by the learner to change visualization from its
original state, (5) Constructing - students build a visualization, and
(6) Presenting - students write or talk about visualizations.

Rößling’s engagement taxonomy, Sorva’s "Two Dimensional
Engagement Taxonomy" and Myller’s "Extended Engagement Tax-
onomy" have been notable extensions to Naps’s each of which
introduced more granularity and more focus on the direct student-
visualization interactions that take place [29, 32, 33]. Myller’s note-
ably distinguished between direct engagement and content owner-
ship. The former is concerned with the level of interaction between
the user and the visualization, with the latter focusing on the re-
lationship between the student and the code that produces the
visualization.

As interaction technology advances, researchers tend to differ-
entiate student interactions with visualizations at different levels.
This relates to the idea that the acts of modification and creation
indicate a higher order conceptual understanding of the curriculum.
The implication being that, the greater the agency of students to
manifest their ideas through a given learning material, the greater
their ability will be to leverage that material for learning.

2.3 Students and Interactive Textbooks

Table 1: Interactive Textbook Platforms and their Features

Jupyter OpenDSA zyBooks Runestone
Fully Modifiable yes no no no

Notes yes no no no
Visualizations yes yes yes yes

Slides no yes no no
Animations yes yes yes yes
Practice Sets yes yes yes yes
Code Sandbox yes no yes yes

Videos yes no yes yes
Quizzes yes yes yes yes

Open Access yes yes no yes

There have been multiple successful attempts to create an inter-
active textbook. These include popular web-native, open-source
options such as Virginia Tech’s OpenDSA project, and Runestone
Interactive, in addition to paid solutions such as Wiley’s zyBooks.

Studies of these platforms show that students overwhelmingly
prefer them to traditional textbooks [34, 35]. Additionally, students
are more likely to engage with visualizations and interactive ele-
ments over static text [36] and that these elements lead to increased
motivation [37].

Interactive textbooks have also been shown to have a substan-
tial impact on student performance. In a multi-institutional study,
Edgecomb et al. noted a significant performance increase in classes
that switched to zyBooks, particularly within the classes’ lower
quartile [18]. McKinny et al. corroborated these findings in addi-
tion to finding a significant increase in the pass rate compared to
previous terms (78% -> 91%) [19].

Though there are instances of Jupyter Notebook being used to
deliver course content in AI education [12] there are no studies,
insofar as we are aware, of notebook usage in introductory com-
puting education. Though existing interactive textbooks provide a
significant number of features, they lack the extensibility of Jupyter

Paper Session: Student Motivation SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

915

Figure 1: Various interactive components in one book chapter from the used textbook.

Notebook and limit how students can modify content and experi-
ment within them (Table 1).

Overall, despite the contributions of prior studies, research that
investigate student usage of interactive computing textbooks is
still lacking. Work on digital textbooks were typically agnostic to
disciplines in terms of modeling student reading behaviors, which
did not account for the hands-on nature of computing education
[15, 17]. Prior studies on students’ interactions with interactive
textbooks did not investigate, on a fine grained level, students’ in-
teractions with integrated static and visual components [18, 19].
To fill the gaps, we seek to investigate (1) CS student interaction
with various components of a tested interactive textbook, (2) the
relationship between such interactions and student academic per-
formance, as well as (3) student learning experience of using such
an interactive textbook.

3 RESEARCH DESIGN
3.1 Research questions
The research questions that guided this study include:

• RQ1: To what extent do students engage with the interactive
textbooks?

• RQ2: To what extent does student engagement with inter-
active computing textbooks predict student performance?

• RQ3: What are student attitudes towards using interactive
computing textbooks for learning?

3.2 Experimental Design
We conducted an in-class experiment in an introductory program-
ming course that enrolled eighty students at a large university in
the North American Pacific Northwest. Jupyter-notebook-based
textbooks tailored to the course were deployed to JupyterHub to
support online access and Travis-CI was used to support unit testing
for the embedded practice problems. The textbookwas organized by
chapters of topics (e.g. stack, and queue, binary trees) and each chap-
ter is represented as a Jupyter-notebook file, which interweaves
static tests, images, and interactive code along with dynamic visu-
alizations and images that are generated from executable code [12].

Additionally, each topic is supported by a set of relevant practice
coding questions (see Figure 1).

Students were required to read a specific chapter from a Jupyter-
notebook-based textbook before and after each lecture. During
the lecture, the same knowledge on a more fine-grained level was
delivered, discussed, and practiced. Additionally, students were
encouraged to use the textbook for quick code testing and note-
taking during lectures.

3.3 Measurements and Data Collection
In answeringRQ1 andRQ2wemust first define our measurements
for student performance and student engagement. Students’ concep-
tual understanding was measured through two, paper-based exams
with their ability to problem-solve and implement solutions to being
measured by programming assignments. Six complex programming
assignments were given throughout the course to measure students’
implementation abilities.

Tomeasure student engagementwe employed the use of Rößling’s
[33] adaptation of Naps’ taxonomy [30]. This includes three levels
of engagement: (1) Viewing - Reading Through the provided static
text and static graphics, (2) Responding - responding to informal
assessments (e.g. quizzes, coding problems), and (3) Changing -
manipulating the dynamic visualization by updating the code (e.g.
changing algorithm parameters) or creating a new visualization.
Guided by this engagement taxonomy, we collected the following
three data sets corresponding to the three levels of engagement:

• Reading time: The amount of time a student has a notebook
open in their browser and can spend reading or referencing
it.

• Response Frequency: The number of times students exe-
cuted cells containing the provided code, quizzes, and coding
problems per chapter.

• Change Frequency: The number of times students manip-
ulated the provided visualization and creating new code
cells for different purposes beyond responding to the given
questions per chapter.

Paper Session: Student Motivation SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

916

Demographic and course history data was collected through
surveys to account for the influence of individual differences in
outcomes.

To address RQ3, we surveyed all participating students using
three open-ended questions:

• How did you use the Jupyter-notebook-based textbook?
• What do you like about the Jupyter-notebook-based text-
book?

• What do you dislike about the Jupyter-notebook-based text-
book?

4 RESULTS
4.1 RQ1: To what extent do students engage

with the interactive textbooks?
Tracking showed that students, on average, spent 4.12 hours with
the provided textbook open per week (reading time), responding to
embedded quizzes or code writing questions for 6.16 times per week
(response frequency), and changing and executing visualization code
or write unrequired code for 5.94 times per week (change frequency)
(see Figure 2).

Figure 2: The trend of tracked reading time, response fre-
quency, and change frequency.

As is shown in Figure 2, students tended to spend more time
on reading the textbook and interacting with the textbook more
frequently when the course progressed towards more complicated
topics. The two types of tracked interactions, response frequency
and change frequency, seem to have a consistent pattern over time.
Although the tracked reading time seemed to follow the general
trend, there was a notable difference between its pattern and the
patterns of the two types of interactions.

To further understand the relationships between reading time
and other interactions we performed Pearson’s correlation analysis
on the three tracked data. response frequency and change frequency
showed a high degree of correlation (r=0.68, p<0.01) with reading
time being correlated with change frequency to a limited extent (Ta-
ble 2). Though this finding demonstrates some consistency between

Table 2: The correlation relations among reading time, fre-
quency of responses, and frequency of changes.

Reading Time
(RT)

Response Frequency
(RF)

Change Frequency
(CF)

RT 1.00 - -
RF 0.25 1.00 -
CF 0.36* 0.68** 1.00
*p < 0.05; **p < 0.01; ***p < 0.001.

reading time and interactions, those differences that do exist may
indicate reading time alone does not give a full representation of
student engagement with the textbooks.

4.2 RQ2: To what extent does student
engagement with interactive textbooks
predict student performance?

To understand the predictive power of student engagement with in-
teractive textbooks on their performance, we conducted blockwise
regression on two sets of factors. The first set of factors were control
factors, including the demographics of students (gender and race)
and the number of CS courses students have taken in high school
and college before taking the current course. Given the lack of
standardization that exists within high-school CS curriculum (and
possibly community college), we used only the counts of courses
in our analysis. The control factors explained 6.1% of the variance
of student performance (𝑅2 = 0.06, p > 0.01). The predictive power
of control factors is presented in Table 3.

Table 3: Multiple regression analysis on student perfor-
mance using control factors.

𝑅2 𝑅2 adj. F 𝛽 t
Student Performance 0.06 0.01 1.29
Control Factors:

Gender -0.54 -1.76
Race 0.08 0.60

CS courses before college -0.10 -0.70
CS courses during college 0.04 0.30
*p < 0.05; **p < 0.01; ***p < 0.001.

The second set of factors was the focus of this study, includ-
ing reading time, response frequency, and change frequency. When
reading time was added as the only factor in the focus block to the
regression model, the variance explained by all factors for student
performance increased to 10.0% (𝑅2 = 0.10, p > 0.05). There was no
significant difference (F=2.46, p > 0.05) between this new model
(see Table 4) and the one reported in Table 3.

No or little multicollinearity is an important assumption of re-
gression analysis. Given the strong correlations between response
frequency and change frequency, we could not directly add both of
them to the model. As a result, we performed Principal Component
Analysis (PCA) to extract a single factor from the two. The Kaiser-
Meyer-Olkin (KMO) measure and Bartlett’s test of sphericity were
applied to verify the validity of PCA. The sampling adequacy was
verified for both factors, with all KMO values bigger than 0.5. The

Paper Session: Student Motivation SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

917

Table 4: Multiple regression analysis on student perfor-
mance using control factors and reading time.

𝑅2 𝑅2 adj. F 𝛽 t
Student performance 0.10 0.03 1.55
Control factors:

Gender -0.49 -1.61
Race 0.08 0.68

CS courses before college -0.08 -0.61
CS courses during college 0.05 0.34
Focus:

Reading time 0.19 1.57
*p < 0.05; **p < 0.01; ***p < 0.001.

results of Bartlett’s test of sphericity were significant, indicating
that correlations between items were sufficiently large for both
factors. We named the extracted single factor interaction.

When the interaction factor was added as the second factor of
the focus block to the model, the variance explained by all factors
for student performance increased to 42.0% (𝑅2 = 0.42, p < 0.05).
Analysis of variance was used to compare this model (see Table 5)
and the one reported in Table 4, and found a significant difference
(F=40.71, p < 0.01) between the two models.

Table 5: Multiple regression analysis on student performance
using control factors and two focus factors.

𝑅2 𝑅2 adj. F 𝛽 t
Student performance 0.42 0.37 8.77
Control factors:

Gender -0.46 -1.90
Race 0.03 0.29

CS courses before college -0.08 -0.76
CS courses during college -0.04 -0.35
Focus:

Reading time 0.03 0.38
Interaction 0.54** 6.38

*p < 0.05; **p < 0.01; ***p < 0.001.

4.3 RQ3: What are student attitudes towards
using interactive textbooks for learning?

To understand student attitudes towards using an interactive text-
book, two raters (a trained undergraduate student and an expe-
rienced computing education researcher) iteratively categorized
the answers to each survey question into major themes using an
inductive analysis approach [38]. The average inter-rater reliability
(Cohen’s Kappa) across the three questions was 0.84. The finalized
coding scheme and individual question’s coding reliability are pre-
sented in Table 6. For the differences between the categorization
of the same response to a question, the two raters would further
discuss with each other and make a final decision collectively.

In answering the first question, "How did you use the Jupyter-
Notebook-based textbook?", all students expressed their usage
was similar to how they would use a traditional digital textbook.
They previewed and reviewed knowledge present in lectures in
addition to attempting the embedded daily practices. It is worth

Table 6: The finalized coding scheme for analyzing student
responses to our survey questions.

Questions Categories Code k

Q1 Previewing
1. read before class
2. code before class
3. practice before class

0.79

Revieweing
1. read during lectures
2. notes during lectures
3. code during lectures

Practicing 1. practice before class
2. practice after class

Q2 Integration

1. execute code
2. visualization
3. write code
4. manipulate visualization

0.88

Q3 Functionality

1. navigation
2. code execution
3. manipulate visualization
4. error messages

0.85

Efficiency

1. navigation difficulty
2. code execution difficulty
3. visualization interaction
difficulty
4. debugging difficulty

noting that many students mentioned that they achieve such goals
by actively interacting with the textbook, such as "stepping through
the provided code", "playing with the actual code", and "trying out
my ideas through code".

The second questionwas "What do you like about the Jupyter-
Notebook-based textbook?". Students uniformly expressed their
enjoyment of the seamless combination of code, text, and visualiza-
tion provided by computation notebooks. Student A said "I love how
versatile the textbook is. You can read the explanation, and try out
the corresponding Java code, see the results without even compiling
the code.". Student B responded "I like how straightforward it makes
the time complexity for me to understand. It is just like a secondary
less with actual code.".

From the third question, "What do you dislike about the
Jupyter-Notebook-based text-book?", we found twomajor themes.
The first regarding the functionality of the notebooks and the sec-
ond relating to the efficiency of its configuration. Student C stated
that "I have to run all the (code) cells manually so I can run the cell
that I really wish to. It’s so tedious". This was said in spite of the fact
that, though cells are interdependent, they need not be executed
one at a time. Jupyter Notebooks allow for the sequential execution
of multiple cells through multiple selection or shortcuts accessible
through the toolbar. This statement indicates that students may
have had a limited understanding of the notebook and its available
functionality. Student D commented that "The limited error message
makes coding in Jupyter Notebook difficult.". Though Jupyter Note-
books provide some error messages, they lack the level of detail
that is commonplace in most modern IDEs. This may provide an
additional barrier to students learning the already difficult task of
debugging.

Paper Session: Student Motivation SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

918

5 DISCUSSION
5.1 Student Engagement
We highlight two findings of our study in terms of RQ1 and RQ2:

(1) The weak correlation between reading time and interactions
suggests a difference in interaction patterns.

(2) Student interactions with the textbook have stronger predic-
tive power than reading. This is evidenced by the comparison
between the interaction and reading time factors in predict-
ing student performance.

These findings are each in alignment with prior studies of stu-
dent interactions with visualization. A meta-study by Hundhausen
et al. [27] found that how students use visualization, rather than
what they see, has the greatest impact on education effectiveness.
The findings of this study, in the context of interactive textbooks,
support this emphasis on student active engagement. After all, in-
teractive technology is effective only when it is used to actively
engage students [1, 28, 30, 39, 40]. However, it is worth noting that
the capability of Jupyter-notebook-based textbooks substantially
goes beyond algorithm visualization as well as that of most inter-
active textbooks (See 1). In the environment of Jupyter-notebook-
based textbooks, students can manipulate the provided code that
generates visualizations, write their own code for exploration or
problem-solving, and see immediate results. These two findings
provide supportive evidence for extending the "Taxonomy of Student
Engagement with Visualizations" [30, 33] to account for the various
types of engagement in the environment of digital notebooks.

The findings of this study also shed light on the use of reading
time as a metric of engagement. Reading time is a conventional
measurement of engagement that is associated with student learn-
ing and has had an influence on data tracking for digital textbooks
[41, 42]. However, given the inconsistency between active interac-
tions and reading time combined with the weak predictive power
of reading time on student performance, reading time may not be
the best measure of student engagement. Analysis of plots show-
ing interactions over time (See Figure 2) and blockwise regression
suggest that student interactions with the textbook are a greater
predictor of student performance compared to reading time.

5.2 Students’ perception of interactive
textbooks

Jupyter-notebook-based textbooks provide an environment that
integrates text, example code, visualizations, and interactive wid-
gets. This integrated environment empowers students to (1) step
through text and example code, (2) manipulate visualization, and
(3) test their ideas through executable code. This integrated en-
vironment provides students with a degree of engagement that
paper-based textbooks can not afford and was universally preferred
by the majority of participants in this study.

Despite these advantages, it is worth noting that Jupyter Note-
book was originally designed for professionals to conduct data
analysis exploration and document and share the analysis process,
rather than developing and hosting digital textbooks [43]. As a
result, some features that are acceptable to professionals may be
difficult for novice learners in computer science. Many participat-
ing students pointed out the limited functionality of debugging in

Jupyter Notebooks as a challenge for them to smoothly use the
provided textbook. The limited debugging functionality, in combi-
nation with the lack of line numbers in code cells, adds unnecessary
difficulty to the already arduous task of debugging. Computational
notebooks have great potential to be an excellent tool for creating
interactive textbooks in fields such as computer and data science.
The inclusion of a more powerful suite of debugging tools may
better fulfill this purpose.

Another challenge faced by the participating students was their
lack of familiarity with Jupyter Notebooks despite ten weeks of con-
tinuous usage. Some students indicated that they had to manually
execute each code cell sequentially and expressed frustration over
the seemingly tedious process. This process can actually be fully
automated by clicking a button on the navigation bar of a notebook
page. This finding indicates that instructors may not assume that
computational notebooks are sufficiently intuitive to students. In-
stead, instructors should consider providing an in-depth overview
of the computational notebooks at the beginning of the course so
that students can use Jupyter-notebook-based textbooks to their
full capabilities.

6 LIMITATIONS AND THREATS TO VALIDITY
The first and most critical limitation of this study is our opera-
tionalization of reading time. This study tracked the active time
of a browser tab with an open book chapter and assumed that the
tracked time is student reading time. Although this is a common
practice in tracking student reading activity there is evidence it may
not be an accurate reflection of student reading time [15]. Future
studies may consider exploring new approaches to reading time
tracking, such as using periodical prompts that ask users to indicate
ongoing reading activities.

Additionally, this study was implemented in a course that was
particularly well suited for interactive textbooks and visualizations.
The class employed a flipped teaching approach which gives stu-
dents particularly strong incentives for actively engaging with the
textbooks. Classes that employ different pedagogical practices or
are not tightly integrated with textbook material may experience
different results. Future studies may consider replicating this study
on a larger scale and investigating the factors that contribute to
student engagement with interactive textbooks and how these are
related to the environment in which they are presented [44].

7 CONCLUSIONS
This study explored modeling student engagement with an interac-
tive digital computing textbook. We found that the pattern of active
interaction did not align with that of reading time. We also found
that active interaction was significantly more effective than read-
ing time in predicting student performance. Additionally, students’
feedback on using interactive textbooks shed light on the effective
practice of adopting computational notebooks in educational con-
texts and showed potential functionality improvements for using
computational notebooks as interactive textbook platforms. The
results of this study contribute to a deeper understanding of student
interactions with computational notebook based digital textbooks
and provide guidance on the effective usage of such textbooks.

Paper Session: Student Motivation SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

919

REFERENCES
[1] Eric Fouh, Monika Akbar, and Clifford A Shaffer. The role of visualization in

computer science education. Computers in the Schools, 29(1-2):95–117, 2012.
[2] Shirley Booth. Learning computer science and engineering in context. Computer

Science Education, 11(3):169–188, 2001.
[3] Qiang Hao, Brad Barnes, Robert Maribe Branch, and Ewan Wright. Predicting

computer science students’ online help-seeking tendencies. Knowledge Manage-
ment & E-Learning: An International Journal, 9(1):19–32, 2017.

[4] David H Smith IV, Qiang Hao, Vanessa Dennen, Michail Tsikerdekis, Bradly
Barnes, Lilu Martin, and Nathan Tresham. Towards understanding online ques-
tion & answer interactions and their effects on student performance in large-scale
stem classes. International Journal of Educational Technology in Higher Education,
17(1):1–15, 2020.

[5] Andreas Holzinger, Michael Kickmeier-Rust, and Dietrich Albert. Dynamic media
in computer science education; content complexity and learning performance: is
less more? Journal of Educational Technology & Society, 11(1), 2008.

[6] Clifford A Shaffer, Matthew L Cooper, Alexander Joel D Alon, Monika Akbar,
Michael Stewart, Sean Ponce, and Stephen H Edwards. Algorithm visualization:
The state of the field. ACM Transactions on Computing Education (TOCE), 10(3):9,
2010.

[7] Anna Eckerdal and Michael Thuné. Novice java programmers’ conceptions of"
object" and" class", and variation theory. ACM SIGCSE Bulletin, 37(3):89–93, 2005.

[8] David H Smith IV, Qiang Hao, Filip Jagodzinski, Yan Liu, and Vishal Gupta.
Quantifying the effects of prior knowledge in entry-level programming courses.
In Proceedings of the ACM Conference on Global Computing Education, pages
30–36. ACM, 2019.

[9] Diane Pecorari, Philip Shaw, Aileen Irvine, Hans Malmström, and Špela Mežek.
Reading in tertiary education: Undergraduate student practices and attitudes.
Quality in Higher Education, 18(2):235–256, 2012.

[10] Fernando Perez and Brian E Granger. Project jupyter: Computational narratives
as the engine of collaborative data science. Retrieved September, 11(207):108, 2015.

[11] Adam Rule, Aurélien Tabard, and James D Hollan. Exploration and explanation
in computational notebooks. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, page 32. ACM, 2018.

[12] Keith O’Hara, Douglas Blank, and James Marshall. Computational notebooks for
ai education. In The Twenty-Eighth International Flairs Conference, 2015.

[13] David B Daniel and William Douglas Woody. E-textbooks at what cost? per-
formance and use of electronic v. print texts. Computers & Education, 62:18–23,
2013.

[14] Ivica Boticki, Gökhan Akçapınar, and Hiroaki Ogata. E-book user modelling
through learning analytics: the case of learner engagement and reading styles.
Interactive Learning Environments, 27(5-6):754–765, 2019.

[15] Khushboo Thaker, Yun Huang, Peter Brusilovsky, and He Daqing. Dynamic
knowledge modeling with heterogeneous activities for adaptive textbooks. In
The 11th International Conference on Educational Data Mining, pages 592–595,
2018.

[16] Hemalatha Sasidharakurup, Rakhi Radhamani, Dhanush Kumar, Nijin Nizar,
Krishnashree Achuthan, and Shyam Diwakar. Using virtual laboratories as
interactive textbooks: Studies on blended learning in biotechnology classrooms.
ICST Trans. e-Education e-Learning, 2(6):e4, 2015.

[17] Hiroaki Ogata, Chengjiu Yin, Misato Oi, Fumiya Okubo, Atsushi Shimada, Ken-
taro Kojima, andMasanori Yamada. E-book-based learning analytics in university
education. In International Conference on Computer in Education (ICCE 2015),
pages 401–406, 2015.

[18] Alex Edgcomb, Frank Vahid, Roman Lysecky, Andre Knoesen, Rajeevan
Amirtharajah, and Mary Lou Dorf. Student performance improvement using
interactive textbooks: A three-university cross-semester analysis. In 2015 ASEE
Annual Conference and Exposition, 2015.

[19] Dawn McKinney, Alex Daniel Edgcomb, Roman Lysecky, and Frank Vahid. Im-
proving pass rates by switching from a passive to an active learning textbook in
cs0. In 2020 ASEE Virtual Annual Conference Experience, 2020.

[20] Carrie Spencer. Research on learners’ preferences for reading from a printed text
or from a computer screen. Journal of Distance Education, 21(1):33–50, 2006.

[21] Yoram Eshet-Alkalai and Nitza Geri. Does the medium affect the message? the
influence of text representation format on critical thinking. Human Systems
Management, 26(4):269–279, 2007.

[22] Amanda J Rockinson-Szapkiw, Jennifer Courduff, Kimberly Carter, and David
Bennett. Electronic versus traditional print textbooks: A comparison study on the

influence of university students’ learning. Computers & Education, 63:259–266,
2013.

[23] Reynol Junco and Candrianna Clem. Predicting course outcomes with digital
textbook usage data. The Internet and Higher Education, 27:54–63, 2015.

[24] R Eric Landrum, Regan AR Gurung, and Nathan Spann. Assessments of textbook
usage and the relationship to student course performance. College Teaching, 60
(1):17–24, 2012.

[25] Ronald Baecker. Sorting out sorting: A case study of software visualization for
teaching computer science. Software visualization: Programming as a multimedia
experience, 1:369–381, 1998.

[26] Marc H Brown and Robert Sedgewick. Techniques for algorithm animation. Ieee
Software, (1):28–39, 1985.

[27] Christopher DHundhausen, Sarah ADouglas, and John T Stasko. Ameta-study of
algorithm visualization effectiveness. Journal of Visual Languages & Computing,
13(3):259–290, 2002.

[28] Christopher D Hundhausen and Jonathan L Brown. Designing, visualizing,
and discussing algorithms within a cs 1 studio experience: An empirical study.
Computers & Education, 50(1):301–326, 2008.

[29] Juha Sorva, Ville Karavirta, and Lauri Malmi. A review of generic program visu-
alization systems for introductory programming education. ACM Transactions
on Computing Education (TOCE), 13(4):1–64, 2013.

[30] Thomas Naps, Stephen Cooper, Boris Koldehofe, Charles Leska, Guido Rößling,
Wanda Dann, Ari Korhonen, Lauri Malmi, Jarmo Rantakokko, Rockford J Ross,
et al. Evaluating the educational impact of visualization. In Acm sigcse bulletin,
volume 35, pages 124–136. ACM, 2003.

[31] Benjamin Samuel Bloom. Taxonomy of educational objectives: the classification of
educational goals: Handbook I, Cognitive domain. McKay, 1969.

[32] Niko Myller, Roman Bednarik, Erkki Sutinen, and Mordechai Ben-Ari. Extending
the engagement taxonomy: Software visualization and collaborative learning.
ACM Transactions on Computing Education (TOCE), 9(1):1–27, 2009.

[33] Guido Rößling, Thomas Naps, Mark S Hall, Ville Karavirta, Andreas Kerren,
Charles Leska, Andrés Moreno, Rainer Oechsle, Susan H Rodger, Jaime Urquiza-
Fuentes, et al. Merging interactive visualizations with hypertextbooks and course
management. In ACM SIGCSE Bulletin, volume 38, pages 166–181. ACM, 2006.

[34] Tommy Färnqvist, Fredrik Heintz, Patrick Lambrix, Linda Mannila, and Chunyan
Wang. Supporting active learning by introducing an interactive teaching tool in
a data structures and algorithms course. In Proceedings of the 47th ACM Technical
Symposium on Computing Science Education, pages 663–668, 2016.

[35] Bradley NMiller and David L Ranum. Beyond pdf and epub: toward an interactive
textbook. In Proceedings of the 17th ACM annual conference on Innovation and
technology in computer science education, pages 150–155, 2012.

[36] Barbara J Ericson, Mark J Guzdial, and Briana B Morrison. Analysis of interactive
features designed to enhance learning in an ebook. In Proceedings of the eleventh
annual International Conference on International Computing Education Research,
pages 169–178, 2015.

[37] Iman YeckehZaare, Paul Resnick, and Barbara Ericson. A spaced, interleaved
retrieval practice tool that is motivating and effective. In Proceedings of the 2019
ACM Conference on International Computing Education Research, pages 71–79,
2019.

[38] Juliet M. Corbin and Anselm L. Strauss. Basics of qualitative research: techniques
and procedures for developing grounded theory. SAGE Publications, Inc., 2008.

[39] David Furcy. Jhavepop: Visualizing linked-list operations in c++ and java. Journal
of Computing Sciences in Colleges, 25(1):32–41, 2009.

[40] S Sriadhi, Robbi Rahim, and Ansari Saleh Ahmar. Rc4 algorithm visualization for
cryptography education. In Journal of Physics: Conference Series, volume 1028,
page 012057. IOP Publishing, 2018.

[41] Naomi S Baron. Words onscreen: The fate of reading in a digital world. Oxford
University Press, USA, 2015.

[42] Yueh-Min Huang and Tsung-Ho Liang. A technique for tracking the reading
rate to identify the e-book reading behaviors and comprehension outcomes of
elementary school students. British Journal of Educational Technology, 46(4):
864–876, 2015.

[43] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason
Grout, Sylvain Corlay, et al. Jupyter notebooks-a publishing format for repro-
ducible computational workflows. In ELPUB, pages 87–90, 2016.

[44] Qiang Hao, David H Smith IV, Naitra Iriumi, Michail Tsikerdekis, and Amy J
Ko. A systematic investigation of replications in computing education research.
ACM Transactions on Computing Education (TOCE), 19(4):1–18, 2019.

Paper Session: Student Motivation SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

920

	Abstract
	1 Introduction
	2 Background
	2.1 Early Digital Textbooks
	2.2 Interactive Visualization in Computing Education
	2.3 Students and Interactive Textbooks

	3 Research Design
	3.1 Research questions
	3.2 Experimental Design
	3.3 Measurements and Data Collection

	4 Results
	4.1 RQ1: To what extent do students engage with the interactive textbooks?
	4.2 RQ2: To what extent does student engagement with interactive textbooks predict student performance?
	4.3 RQ3: What are student attitudes towards using interactive textbooks for learning?

	5 Discussion
	5.1 Student Engagement
	5.2 Students' perception of interactive textbooks

	6 Limitations and threats to validity
	7 Conclusions
	References

