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ARTICLE

Towards understanding the effective design of automated 
formative feedback for programming assignments
Qiang Hao a, David H. Smith IVa, Lu Dingb, Amy Koc, Camille Ottawaya, Jack Wilsona, 
Kai H. Arakawaa, Alistair Turcana, Timothy Poehlmana and Tyler Greera

aComputer Science & SMATE, Western Washington University, Bellingham, WA, US; bFaculty Development 
and Innovation Center, Eastern Illinois University, Charleston, IL, US; cThe Information School, University of 
Washington, Seattle, WA, US

ABSTRACT
Background and Context: automated feedback for programming 
assignments has great potential in promoting just-in-time learning, 
but there has been little work investigating the design of feedback 
in this context.
Objective: to investigate the impacts of different designs of auto-
mated feedback on student learning at a fine-grained level, and 
how students interacted with and perceived the feedback.
Method: a controlled quasi-experiment of 76 CS students, where 
students of each group received a different combination of three 
types of automated feedback for their programming assignments.
Findings: feedback addressing the gap between expected and 
actual outputs is critical to effective learning; feedback lacking 
enough details may lead to system gaming behaviors.
Implications: the design of feedback has substantial impacts on 
the efficacy of automated feedback for programming assignments; 
more research is needed to extend what is known about effective 
feedback design in this context.
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1. Introduction

Providing timely feedback to student programming assignments is a challenging task for 
computing educators. On the one hand, the nature of code makes programming assign-
ments challenging to assess. For the same programming assignment, many problem- 
solving strategies may be available for students to use, and very different code may 
achieve the same purpose (Kinnunen & Simon, 2012). Different individual coding habits 
and styles only exacerbate the challenge. Instructors typically need to test a student’s 
code against a large number of testing cases to draw a solid conclusion on its correctness. 
On the other hand, the fast increasing CS enrollment substantially lowers instructor-to- 
student ratios and increases the workload of instructors (Camp et al., 2017; Greer et al., 
2019; Sax et al., 2017). For instance, undergraduate CS enrollment has doubled from 2011 
to 2017 in U.S. colleges, while the number of CS instructors grows at a significantly slower 
rate (Computing Research Association, 2017; Hao et al., 2019a). As a result, it is more 
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challenging for CS instructors to allocate sufficient time to assess and provide feedback 
for programming assignments.

Feedback can be a powerful learning intervention when used effectively. Decades of 
educational research have demonstrated consistent efficacy of feedback in improving 
student learning performance. Depending on the delivery time, feedback can be classified 
into two types: summative and formative feedback. Summative feedback is provided to 
learners along with the assessment results, while formative feedback is provided during 
the learning process before the assessment results are given (Brinko, 1993; Gielen et al., 
2010). Formative feedback has been constantly found to be more effective than summa-
tive feedback across different fields (Saifi et al., 2011; Yorke, 2001, 2003). (Black & Wiliam, 
2009) reported that formative feedback, as one of the most effective educational inter-
ventions, produced learning gains with stable effect sizes between 0.4 and 0.7. Formative 
feedback works better because it can help learners understand where they are in their 
learning, where they are going, and how to get there (Nicol & Macfarlane-Dick, 2006; 
Sadler, 1989).

Given the benefits of formative feedback, computing educators and researchers have 
studied how to automate the process of grading programming assignments and provid-
ing formative feedback to students for more than two decades. Automated grading 
systems have been developed, implemented, and evaluated (Chen, 2004; Keuning et al., 
2018; Parihar et al., 2017). These systems benefit both students and instructors. Using 
these systems, students can submit their programming assignments numerous times 
before the deadlines and get feedback for further improvements to their code or fixing 
mistakes, promoting just-in-time learning (Chow et al., 2017; Ihantola et al., 2010; Parihar 
et al., 2017; Pears et al., 2007). These systems can also allow instructors to save substantial 
time from grading programming assignments manually, and focus on the pedagogical 
design of the courses (Cheang et al., 2003; Pears et al., 2007; Vujošević -Janičić et al., 2013).

Despite the contributions from prior studies on automated feedback, few studies have 
explored the design of formative feedback for programming assignments empirically. 
Automated feedback is powerful, but also substantially less adaptive compared with 
human helpers. When human helpers are present, back-and-forth communication is 
used to help novice learners by clarifying confusions, adapting student questions, and 
diagnosing student learning gaps (Hao et al., 2016; Smith IV et al., 2020). In contrast, 
automated feedback is typically delivered as information for learners to digest and absorb 
with little to no communication capacity. As a result, the information contained in 
automated feedback needs to be carefully designed to realize its full potential. In addition, 
proposals to limit information in automated feedback need further verification from 
empirical studies. For instance, a widespread concern with automated feedback systems 
is that formative feedback may encourage students to abuse the automated systems 
(Chen, 2004; Guerreiro & Georgouli, 2006; Ihantola et al., 2010). One common practice to 
address this issue is to limit the information contained in automated formative feedback. 
However, there is little evidence supporting the efficacy of such practices. Understanding 
the designs of feedback based on solid evidence is critical to strengthening the effective-
ness of automated feedback systems.

To fill this gap, this study explored the efficacy of different types of formative feedback 
on student learning in the context of automated feedback for programming assignments 
through a controlled quasi-experiment. This study contributes to a deeper understanding 
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of the designs of automated feedback, which in turn informs the design of automated 
feedback systems.

2. Background

2.1. Design of formative feedback

Feedback, as a powerful educational intervention, has been studied extensively in the last 
three decades (Hattie & Gan, 2011; Van der Kleij et al., 2015). Numerous models of 
feedback were proposed from different perspectives, such as the role of feedback in the 
learning process, the impacts of feedback on student performance, classification of feed-
back, and contributing factors to effective feedback (Boud & Molloy, 2013; Butler & Winne, 
1995; Evans, 2013; Ihantola et al., 2015; Kluger & DeNisi, 1996; Pardo, 2018; Shute, 2008).

One of the most comprehensive conceptual analysis of feedback was provided by 
Hattie and Timperley (2007). The authors proposed a feedback model centered around 
reducing the gap between students’ actual performance and expected performance 
through three questions: where am I going, how am I going, and where to next. Based 
on the model, the authors further proposed a feedback classification with four levels: task, 
process, regulation, and self. Feedback at the task level is about how well a task is being 
accomplished or performed. An example of feedback at this level is the information on 
whether an answer is correct. Feedback at the process level defines what is needed in 
order to finish the task. Hints can generally be considered feedback at the process level. 
Feedback at the regulation level refers to suggestions on how to self-regulate the learning 
process. Feedback at the self level is about the characteristics of the learner. Feedback at 
the self level has been found to be ineffective for student learning by many studies, 
because it fails to address how to achieve the intended learning goals (Hattie & Timperley, 
2007; Van der Kleij et al., 2012). It is worth noting that both the model and feedback 
classification proposed by Hattie and Timperley (2007) are tailored to learning and 
teaching in classroom settings, emphasizing the communication between students and 
teachers. When the learning context changes and requires the interaction between 
humans and machines, the proposed feedback system may not be perfectly applicable. 
For instance, it is still tremendously difficult for any intelligent learning systems to perform 
back-and-forth communications with learners, let alone providing useful feedback at the 
regulation and self levels.

The development of learning technologies enabled feedback to be provided automa-
tically in a scalable approach. However, automated feedback tends to lack the ability to 
adapt to students on an individual basis in the way that human helpers can. Therefore, 
how to optimize the design of automated feedback in the context of computer-based 
instruction attracted substantial attention from researchers. Narciss and Huth (2004) 
proposed a notable feedback classification specific to learning tasks in this context. 
Three levels of feedback are included in this classification, including knowledge of results 
(KR), knowledge of correct responses (KCR), and elaborated feedback (EF). KR feedback 
refers to the information on correctness. For example, error flagging that only shows 
where the error is located but does not show additional information is a type of KR. KCR 
feedback provides the correct answer to the problem. EF feedback provides a detailed 
explanation and even hints to fix the identified problems in student answers. Hundreds of 
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studies adopted this feedback classification to investigate the impacts of varied forms of 
feedback on student learning (Lee et al., 2010; McMillan et al., 2013). Van der Kleij et al. 
(2015) synthesized 40 studies that adopted this feedback classification, and found that EF 
in particular was more effective than KR and KCR for higher-order learning outcomes, and 
confirmed that the feedback classification proposed by Narciss and Huth (2004) provided 
a theoretical foundation for studying the designs of feedback in the context of computer- 
based instruction. This perspective of seeing feedback as information that can be 
designed has profound impacts on research on feedback, learning systems, and intelli-
gent tutors across different educational fields (e.g., Alvarez et al., 2012; Fyfe & Rittle- 
Johnson, 2016; Van der Kleij et al., 2015).

Additionally, a large body of research has investigated what characteristics of feedback 
contribute to its effectiveness from the perspective of information design. Three factors, 
including student prior knowledge, tasks, and the design of feedback were found most 
important for the efficacy of feedback (Narciss & Huth, 2004; Narciss et al., 2014; Shute, 
2008). In order for feedback to be effective, four conditions need to be met: 1) the 
students need the feedback, 2) the students have sufficient time to process the feed-
back, 3) the students are willing to use the feedback, and 4) the students are able to make 
sense of the feedback (Bangert-Drowns et al., 1991; Stobart, 2008). Different designs of 
feedback may also impact its efficacy. For instance, specificity is one of the design aspects 
that have been studied intensively. Specificity is needed for effective information delivery. 
Feedback lacking specificity is more likely to result in frustration and loss of motivation 
(Van Merrienboer & Sweller, 2005). Nevertheless, feedback that is too specific and com-
plex may also risk overwhelming students (Serge et al., 2013).

2.2. Auto-grading and auto-feedback systems

Programming assignments are challenging to grade and to provide feedback on manu-
ally. When class sizes grow fast, this problem can be even more challenging to tackle. 
Therefore, how to automate the process of grading assignments and providing feedback 
to students has attracted many researchers from different fields, such as computing 
education and software engineering Cassel and Fox (2000).

Early studies on the topic of automated grading and feedback mainly focused on 
developing and testing automated grading systems because performing assessments in 
a timely manner is more important for instructors to perform their essential duties than 
to provide informative feedback. Therefore, the focus on automated feedback was 
sidelined at first. Furthermore, many studies expressed concerns that automation may 
incite students to abuse the feedback system (Cheang et al., 2003; Chen, 2004; 
Guerreiro & Georgouli, 2006; Ihantola et al., 2010). Several measurements were pro-
posed to discourage potential “system gaming behaviors”, such as providing only 
summative feedback, limiting the number of submission attempts, and limiting the 
feedback content (Chow et al., 2017; Daly & Horgan, 2004; Keuning et al., 2018; Pieterse, 
2013). System gaming behaviors are a reasonable concern if hints revealing direct 
answers can be easily accessed by students. However, feedback is not only limited to 
hints. For instance, correctness, as a type of feedback, has been found positively 
impactful to learning if it is given before the summative assessment (Ala-Mutka, 2005; 
Alemán, 2010).
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Continued research on this topic in the last decade led to the development of 
a number of tools focusing on providing students with feedback on their programming 
process. How to effectively generate automated feedback was the major focus of these 
studies (Luxton-Reilly et al., 2018). Web-CAT, a representative system developed in the 
early days, has evolved into an online automated feedback system that served more than 
30 institutions in the U.S. (Edwards & Perez-Quinones, 2008). Bluefix, an extension of BlueJ 
IDE, provided programming students error diagnosis and repair feedback based on 
crowd-sourced information (Watson et al., 2012). Neve et al. (2012) attempted to provide 
in-lab tutor-student dynamic interaction specific to programming through an online 
coding environment. Additionally, research on enhanced compiler error messages and 
student misconceptions also provided valuable findings that contribute to this topic 
(Becker et al., 2019). For instance, Karvelas et al. (2020) found that compilation mechan-
isms and error message presentation had substantial impacts on the programming 
behaviors of novice learners, which indicates that more human-computer interaction 
research on the design of automated feedback systems is needed. Hao and Tsikerdekis 
(2019) studied using the existing infrastructure of continuous integration tools to provide 
students with automated feedback and attempted to examine its impacts on student 
knowledge transfer. Gusukuma et al. (2020) studied decoupling the modules of conven-
tional automated feedback systems such as type inferencing, flow analysis, pattern 
matching, and unit testing.

Recent studies on the topic of automated feedback have shifted the focus to studying 
data-driven approaches to test and provide feedback on students’ code (Chow et al., 2017; 
Parihar et al., 2017; Price et al., 2018; Vujošević -Janičić et al., 2013). The data-driven 
approaches include clustering, filtering, and pattern mining (Gao et al., 2016; Head et al., 
2017). Such approaches typically depend on a massive number of student submissions, 
and aim to provide students suggestions on repairing their code by measuring the 
distance between exemplary code and individual students’ code (Drummond et al., 
2014; Gulwani et al., 2018; Wang et al., 2018). Such approaches still require testing in an 
authentic environment and need further investigation on their reliability on smaller 
datasets. CLuster And RepAir tool (CLARA) is a representative system investigated by 
recent studies on this topic. CLARA leverages the “wisdom of the crowd” by extracting 
programs that pass test cases, clustering them based on approach similarity, comparing 
working programs to nonworking ones (Gulwani et al., 2018). Although CLARA was tested 
in the context of MOOCs where a massive number of student code submissions are 
available, whether it works in the context of face-to-face classrooms is still unknown.

Despite the advances in feedback generation approaches, few studies investigated the 
designs of feedback in the context of computing education from the perspective of 
information design. There is strong evidence from other disciplines that feedback can 
be designed and delivered in different ways, and such differences may render different 
influences on student performance (Alvarez et al., 2012; Fyfe & Rittle-Johnson, 2016; Van 
der Kleij et al., 2015). The meta-analysis study of Keuning et al. (2018) was the first that 
investigated automated feedback using the perspective of information design in comput-
ing education, where Keuning et al. (2018) attempted to classify existing automated 
feedback tools using the feedback classification proposed by Narciss and Huth (2004). 
Studies investigating a specific design of automated feedback design are abundant 
(Hundhausen & Brown, 2007; Nygren et al., 2019). However, empirical studies that 
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compared different automated feedback designs from the perspective of information 
design are rare in computing education (Luxton-Reilly et al., 2018). Hao et al. (2019b) 
examined the efficacy of different designs of automated feedback for programming 
assignments by comparing the efficacy of correctness, knowledge gap, and hints on 
student comprehension and problem-solving of complex programming assignments, 
and found addressing the knowledge gap is critical to improve student learning. 
However, their findings were limited by the small sample size and a lack of theoretical 
framework. A deeper understanding of how different types of feedback impact student 
learning is critical to guide system design and development, and is likely to have direct 
impacts on student learning (Keuning et al., 2018).

3. Research design

3.1. Research question

The following questions guided our study:
(1) How do different types of automated formative feedback impact student perfor-

mance on programming assignments?
(2) How do different types of automated formative feedback impact student interac-

tion with the automated feedback system?
(3) How do students perceive different types of automated formative feedback?

3.2. System design

For this study, we implemented an automated formative feedback system utilizing three 
technologies that are popular with programming courses, including GitHub, Gradle, and 
Travis-CI. GitHub (github.com) is a version-control code repository hosting service. We 
used GitHub to host student programming assignments. Students were instructed to 
commit and push their code once they reached a self-determined milestone from the 
beginning of the course. Gradle (gradle.org) is an open-source build automation system 
for Java programming. Travis-CI (travis-ci.com) is a continuous integration service used to 
build and test software projects hosted at GitHub. We used Gradle and Travis-CI to build, 
test, and provide feedback to student programming assignments hosted on GitHub.

The combination of GitHub, Gradle, and Travis-CI is capable of providing students 
automated formative feedback without being obtrusive to their learning experience. 
Nearly all tested automated feedback systems belong to pull technologies (e.g., Web- 
CAT, AutoLab) (Kendall & Kendall, 1999). Such systems are not an integral part of the 
coding, debugging, and testing process when students work on programming assign-
ments (Parihar et al., 2017). Students need to submit their code manually every time if 
they seek automated feedback. If students fail to utilize such systems until it is too late, it 
will substantially reduce the effectiveness of formative feedback, or even become simply 
summative (Hao et al., 2019b). Although IDE plugins do exist for platforms such as Web- 
CAT they lack the utility of Git and force students to use the tools with which they are 
compatible. In contrast, the combination of GitHub, Gradle, and Travis-CI belongs to push 
technologies (Kendall & Kendall, 1999). Git, as a version control system adopted by 
GitHub, is an integral part of students’ coding process. When students push their code 
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to GitHub, it will trigger Travis-CI to test the pushed code and push formative feedback to 
students. The architecture of the automated feedback system based on GitHub, Gradle, 
and Travis-CI is presented in Figure 1. The feedback associated with each push will be 
displayed and archived on the Travis-CI website (see Figure 2).

Figure 1. The architecture of automated feedback system based on GitHub and Travis-CI.

Figure 2. A partial screenshot of what a student sees on the Travis-CI website.
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3.3. Experiment design

To answer the first two research questions, we conducted a controlled experiment on 76 
students taking a CS2 course in a large university in the Pacific Northwest of the United 
States. The course (and the study) ran for 10 weeks, and is composed of three 50-min 
lectures and two 90-min lab sections per week.

Each student was required to finish three complex individual programming assign-
ments during the lab sections. Each programming assignment required about 50 to 300 
lines of code to complete. Each assignment was designed to have students complete a set 
of functions and apply these functions in the main program. Automated feedback was 
provided on both the individual functions implemented by students and the main 
program with randomized input data (see Figure 3 for an example). Student performance 
on each assignment is determined by the percentage of test cases that are passed.

Setting up different types of formative feedback is essential to answer the first two 
research questions. Given the same unit test, we prepared a collection of automated 
feedback based on different input data by using both the representative edge cases and 
randomly generated data. In terms of the designs of the feedback, we adopted the 
feedback classification of Narciss and Huth (Narciss & Huth, 2004), developing three 
types of feedback per unit test: knowledge of results (KR), knowledge of correct responses 
(KCR), and elaborated feedback (EF).

To form groups for the controlled experiment, we took advantage of the setups of the 
pre-existing lab sections. Before the course started, students enrolled in this course were 
randomly assigned to one of the three different lab sections which they exclusively 
attended for the entire semester. Each lab section was facilitated by a teaching assistant; 
all teaching assistants went through the same training before the course. This setup 

Figure 3. An example of feedback from multiple unit testing.
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helped minimize possible communication across lab sections as the student body for each 
section was consistent throughout the quarter. Therefore, we treated students in a lab 
session as a group and provided each group with different types of automated feedback:

• Group KR (25 students): KR
• Group KCR (25 students): KR + KCR
• Group EF (26 students): KR + KCR + EF
The KR was implemented as the information indicating if a test case passed or failed. 

The KCR feedback was implemented as the input and contrasts between the expected 
output and actual output. The EF feedback was implemented as a one-level hint that 
addresses the top five mistakes summarized from student code submissions in the prior 
three quarters. If the mistake can be mapped to a misconception, the hint would be 
coupled with more explanations that addressed the misconception. We loosely followed 
the guidelines of Haldeman et al. (2018) in our implementation of the EF feedback. An 
example of the feedback each group received on the same function is presented in 
Figure 4.

It is worth noting that we did not set up a group receiving no automated feedback or 
a group receiving the combination of KR and EF. There is abundant evidence that 
providing some feedback is always more beneficial to student learning as long as the 
feedback does not confuse students further (Higgins et al., 2002; Juwah et al., 2004; 
Parihar et al., 2017). Without KCR feedback, the combination of KR and EF may make 
less sense to students, and the effects of EF might be substantially reduced in this case. 
Without knowing the gap between the expected and actual results, hints can do little to 
direct students in the right direction. The ultimate goal of this study is to understand what 
feedback has the greatest impact on student learning, and use this understanding to 

Figure 4. An example of different feedback configurations for a method.
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guide the design and improvement of automated feedback systems. The possible group 
configurations, such as receiving no automated feedback or receiving the combination of 
KR and EF are not the best options to help achieve the goal. As a result, we did not include 
the two possible groups in our research design.

3.4. Data collection

To answer the first research question “How do different types of automated formative 
feedback impact student performance on programming assignments?”, we collected stu-
dent performance on all three programming assignments.

In answering the second research question “How do different types of automated 
formative feedback impact student interaction with the automated feedback system?”, we 
collected the following student behavior data through APIs of GitHub and Travis-CI:

• Timestamps: Timestamps of pushes per student per assignment.
• Efforts: Number of lines changed since the last push per student per assignment.
• Automated testing results: Which test cases are passed per push per student per 

assignment.
Finally, to answer the third research question “How do students perceive different types 

of automated formative feedback?”, we surveyed all students by the end of the course 
using four questions:

• How often did you use the feedback from Travis-CI?
• What do you do when you find you have failed a test case on Travis-CI? Describe your 

experience of utilizing the feedback from Travis-CI.
• What do you like about the automated feedback from Travis-CI?
• What do you dislike about the automated feedback from Travis-CI? How do you want 

us to improve it?

4. Results

4.1. How do different types of automated formative feedback impact student 
performance on programming assignments?

We summarized the performance comparisons among the three groups’ programming 
assignment in Table 1. Students in Group EF seem to have better performance than in 
Group KCR and KR, while students in Group KCR seem to have better performance than in 
Group KR.

To gain insights into this group performance differences over time, we plotted student 
progress over time by group. Student progress can be evidenced by the average percen-
tage of passed test cases. For instance, when we plotted student progress of Assignment 2 

Table 1. Average student performance by group and by assignment.
Assignment Averages

Assignment 1 Assignment 2 Assignment 3

Group KR 75.30 77.45 67.50
Group KCR 91.75 85.59 84.29
Group EF 92.44 89.65 90.65

The total of each assignment is 100.
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by group, we found that Group KR tended to make progress more slowly than their 
counterparts in Group KCR and EF, and did not pass as many test cases as Group KCR and 
EF by the deadline either (see Figure 5). A similar pattern was found in Assignment 1 
and 3.

To quantify the observed pattern, we performed One-Way Multiple Analysis of Variance 
(MANOVA) to examine the student performance differences on the three assignments 
across three groups. To address the possible issue of bimodal performance in CS courses, 
we performed log transformation on the data of student assignment performance first. 
The Shapiro–Wilk test yielded a non-significant result (p > 0.05), indicating that the 
transformed data is normally distributed. The Variance Inflation Factors (VIF) of student 
performance of the three assignments were all smaller than 2.5, indicating a mild correla-
tion among student performance across assignments. Box’s test yielded a non-significant 
result (p = 0.19), indicating that the homogeneity of variance-covariance matrices could 
be assumed.

The results of MANOVA indicated a significant difference [Wilk’s Λ = 0.45, F(2, 73) = 9.12, 
and p < 0.001]. To understand which two groups had significantly different performance, 
we followed up MANOVA with discriminant analysis, which revealed two discriminant 
functions. The first function explained 95.0% of the variance, canonical R2 = 0.69, whereas 
the second explained 2.0%, canonical R2 = 0.15. In combination, these discriminative 
functions significantly differentiated Group KR from Group KCR/EF [Λ = 0.43, χ2 = 44.17, p 
< 0.001], but removing the first function indicated that the second function did not 
significantly differentiate the remaining two groups [Λ = 0.91, χ2 = 1.27, p > 0.5]. In 
summary, the significant differences detected by MANOVA only existed between Group 
KR and Group KCR/EF.

Figure 5. Percentage of passed test cases by group on Assignment 2.
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4.2. How do different types of automated formative feedback impact student 
interaction with the automated feedback system?

To answer the second research question, we studied (a) student efforts on each program-
ming assignment over time and (b) the behaviors of seeking automated feedback by 
group. Student efforts were evidenced by the number of changed lines of code on a daily 
basis. When aggregated, student efforts per assignment showed largely the same pattern. 
Students tended to make little to moderate efforts in the early stage after an assignment 
was given, stagnate in the middle stage, and make a tremendous amount of effort 
towards the due dates. However, we did not see any obvious differences across groups 
in terms of student efforts (see Figure 6). We followed up this observation with MANOVA 
on averaged student efforts but did not find statistically significant results either [F(2, 
73) = 1.35, and p > 0.05].

Student feedback-seeking behaviors were inferred from student actions of pushing 
their code to GitHub, which will trigger the automated testing and feedback to be sent to 
students. When aggregated, student feedback-seeking behaviors showed inconsistent 
patterns across the assignments. Students from Group KR seemed to seek more feedback 
than their counterparts in Group KCR and EF on the last two assignments, but a similar 
amount of feedback on the first assignment (see Figure 7).

We followed up the above observation with MANOVA to quantify the differences in 
student feedback-seeking behaviors. The results of MANOVA indicated a significant dif-
ference [Wilk’s Λ = 0.37, F(2, 73) = 5.36, and p < 0.05]. Discriminant analysis was used to 
determine where the difference was. Two discriminant functions were built. The first 
function explained 91.0% of the variance, canonical R2 = 0.16, whereas the second 
explained 6.0%, canonical R2 = 0.01. In combination, these discriminative functions 
significantly differentiated Group KR from Group KCR/EF [Λ = 0.89, χ2 = 21.29, p < 
0.05], but removing the first function indicated that the second function did not signifi-
cantly differentiate the remaining two groups [Λ = 0.96, χ2 = 1.31, p > 0.05]. In summary, 
the significant differences detected by MANOVA only existed between Group KR and 
Group KCR/EF.

Figure 6. Number of changed lines of code by group per assignment.
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4.3. How do students perceive different types of automated formative feedback?

To understand student perception of automated formative feedback, we analyzed stu-
dent answers to the three survey questions. Question 1 adopted a four-point Likert scale 
to assess the degree to which students utilized the automated formative feedback pushed 
from Travis-CI. We used the chi-square test to compare student answers to this question 
across groups. Questions 2 to 4 were open-ended. We applied grounded theory analysis 
to the answers to the three questions, starting with open coding, moving to axial coding 
sequentially (Corbin & Strauss, 2008). We summarized the analysis results and identified 
themes in the following sections.

4.3.1. Question 1: how often did you use the feedback from Travis-CI?
For the first question, we used a four-point Likert scale to assess the degree to which 
students utilized the automated formative feedback pushed from Travis-CI. The responses 
from students are summarized in Figure 8. Overall, students across all groups reported 
that they utilized formative feedback frequently. Although students from Group EF were 
on the higher end of the scale, we did not find any significant differences between groups 
using the Chi-squared test [χ2ð6; 73Þ ¼ 2:89; p > 0:05].

4.3.2. Question 2: What do you do when you find you have failed a test case on 
Travis-CI? Describe your experience of utilizing the feedback from Travis-CI
We identified a single theme with five steps in terms of how students utilize automated 
formative feedback from student responses across the three groups: (1) Analyze Travis’s 
output and attempt to understand the cause of the error, (2) Identify the location within 
the source code responsible for the error, (3) Attempt a fix, (4) Push changes to Travis, and 
(5) Repeat until all test cases are passed. It is worth noting that many students mentioned 
that they would reference outside sources such as StackOverflow (stackoverflow.com) to 
help understand the feedback if there was a bug in their code. Several students from 
Group KR mentioned that they had a difficult time figuring out why they failed a test case 
or needed to develop their own test cases, but no students from Group KCR or EF 
mentioned the same experience.

Figure 7. Feedback-seeking frequencies by group per assignment.
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4.3.3. Question 3: what do you like about the automated feedback from Travis-CI?
We identified two major themes from student responses across the three groups, includ-
ing the positive psychological effects and unobtrusiveness of the feedback system to their 
learning experience. On the unobtrusiveness of the feedback system, many students 
mentioned that they felt that they were with a tutor that could tell them what went 
wrong constantly without interfering with their learning experience. One student men-
tioned that “the system creates a cohesive and supportive environment . . . “. On the 
positive psychological effects, many students commented on the satisfaction they had 
when automated feedback indicated that they had passed all test cases. One student said 
“ . . . when I turn in a lab on Travis it gives me peace of mind that I’ll get a good grade on 
the assignment . . . ”. Another student stated that “It felt good to see the green light on 
Travis (that indicates all test cases are passed) . . . ”.

4.3.4. Question 4: What do you dislike about the automated feedback from 
Travis-CI? How do you want us to improve it?
We identified two major themes and a notable difference between Group KR and Group 
KCR/EF. The two themes include the speed of the system and the capability of the system 
to allow users to add test cases. On the capability of the system to allow users to add test 
cases, many students expressed that they wished the system could take the test cases 
they wanted to add.

On the speed of the system, many students expressed that sometimes it took too long 
(up to tens of minutes) for them to get the automated feedback (after they pushed their 
code to GitHub). Despite the numerous advantages of the implemented system (e.g., cost- 
free, replicability), it is running on one single-threaded build service that will queue all 
tests that need to be performed. We observed that students tended to procrastinate in 
the beginning, and did not start committing more time and effort to work on the 

Figure 8. Frequency of utilizing automated formative feedback by group.
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assignments when due dates were approaching. This will end up with many testing tasks 
queued by the system, and delay the system from pushing feedback to all students from 
instantly to tens of minutes.

The major difference we identified between groups is the difficulty in interpreting the 
automated feedback. Many students from Group KR complained about the difficulties in 
interpreting the feedback. One student commented that “. . .I know that I failed a test case, 
but I don’t know where I was wrong . . .”. In contrast, we can not find a similar complaint in 
the answers from Group KCR and EF.

5. Discussion

5.1. Impacts of different types of feedback on student learning

We investigated the degree of differential performance that exists between three groups, 
each provided with one of the following feedback categories:

(1) Knowledge of Results (KR): feedback includes information on what test cases failed.
(2) Knowledge of Correct Responses (KCR): KR + Additional information on where in the 

test case the failure occurred.
(3) Elaborated Feedback (EF): KCR + A hint regarding what the student might need to do 

to fix their code.
Among all the findings, we would like to highlight two results of the impacts of 

different types of feedback on student learning and student perception towards the 
feedback.

Across three complex programming assignments, we found that students who 
received higher levels of feedback (KCR and EF) outperformed their counterparts who 
received only KR feedback significantly. This result is consistent with research on feedback 
design in other contexts (Hattie & Timperley, 2007; Van der Kleij et al., 2012), and partially 
confirmed the findings of Hao et al. (2019b). Additionally, we found that students receiv-
ing only KR feedback tended to complain more about the difficulties in interpreting the 
feedback, and seek feedback more frequently than students receiving higher levels of 
feedback. At first glance, it may seem counterintuitive that the group that complained the 
most about feedback sought feedback most frequently. Early studies on this topic raised 
concerns of students abusing automated feedback over similar observations (Cheang 
et al., 2003; Chen, 2004; Guerreiro & Georgouli, 2006). Without questioning the efficacy of 
the feedback, we may reach a similar conclusion. However, when we put these results 
together with the evidence on student performance differences, it helps us gain a deep 
understanding of the efficacy of feedback on correctness. A more reasonable interpreta-
tion is that the low interpretability of KR feedback leads to difficulty in effective debug-
ging, which in turn leads to more trial and error behaviors in testing.

We found insignificant performance differences between students receiving KCR feed-
back and students receiving both KCR and EF feedback. There are two possible inter-
pretations for this result:

• KCR feedback is sufficient for most cases: The comparison between expected and actual 
outputs can inform students of both where they are currently and where the destination is 
(Nicol & Macfarlane-Dick, 2006; Sadler, 1989). With these two pieces of information, students 
are able to figure out how to get to the destination from their current positions. If this is true, 
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hints and more detailed explanations might not be needed for every problem students 
encounter. Providing hints and more detailed explanations that effectively address learning 
misconceptions could be either computationally expensive or require great attention from 
human instructors (Hao et al., 2019b). If some bottlenecks or the most challenging compo-
nents of a given problem can be identified as worthy of hints and detailed explanations, it will 
be more efficient in terms of either computational power or instructors’ time. Additionally, 
providing KCR feedback without hints may strengthen student debugging skills because 
conquering the problem means that students have figure out “how to get the destination 
from where they are currently” (Nicol & Macfarlane-Dick, 2006). These are questions that need 
to be answered by future studies on this topic.

• EF feedback needs further investigation: We loosely followed the guidelines of Haldeman 
et al. (2018) in our implementation of the EF feedback, and only implemented the hints for 
the top five most common mistakes. On the one hand, we found that one-level hints were not 
significantly beneficial to student learning. On the other hand, students did not demonstrate 
any evidence of abusing one-level hints. One-level hints do not risk revealing the direct 
answers to students, but may also not be adaptive enough to help students overcome the 
difficulties they meet. This may explain the findings of this study. Multi-leveled hints may be 
more effective in helping students overcome difficulties, but may also lead students to game 
the system by constantly accessing hints at deeper levels without a sincere effort in problem- 
solving (Aleven et al., 2016; D Baker et al., 2006; Baker et al., 2008). Future studies may 
consider comparing the efficacy of different designs on hints through controlled 
experiments.

We do not yet have the evidence to distinguish which of these interpretations is a better 
account for the results. However, we believe that more investigations to understand the 
feedback design of effective automated feedback are necessary.

5.2. Feedback designs for automated testing and feedback systems

We have established that there is a necessity to understand the effects of different designs 
of feedback, and use this knowledge to guide the design of automated testing and 
feedback systems. Developing a stand-alone system that manages student programming 
assignments and grades, tests student code, and provides feedback is challenging and 
also requires a significant amount of maintenance effort. Therefore, many of the auto-
mated feedback systems reported in prior studies are no longer accessible to the public. 
Future development efforts may consider taking advantage of the existing services that 
are popular in programming courses (e.g., GitHub) and adopting the paradigm of micro-
services (Hao & Tsikerdekis, 2019). As such, the development efforts could solely focus on 
automated testing and feedback.

Effective feedback design may need to find a balance between providing adaptive help 
and being cost-effective. The findings of this study can provide guidance on this challenge. 
Simple feedback can be effective. However, to realize its full potential, the information of 
feedback should not be restricted to the extent of being difficult to interpret. Standing 
alone, KR feedback is not very helpful to student learning. However, KR and KCR feedback, 
when combined, can be positively impactful. Based on the findings of this study, we would 
recommend that the minimum amount of information automated feedback covers to 
include both correctness and the gap between expected and actual outputs.

Despite of the recent advances in automatic generation of adaptive feedback, it is still 
extremely challenging to generate hints and detailed explanations that address student 
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learning misconceptions automatically. The techniques of automatic feedback generation 
typically require a massive amount of student code submissions, which further limits their 
application in authentic educational settings (Gulwani et al., 2018; Wang et al., 2018). The 
findings of our study provide practical guidelines for the scenario where automatic 
generation of hints and detailed explanations is too difficult or not possible – KR and 
KCR feedback, without hints and detailed explanations, can still help students sufficiently 
on many components of problem-solving.

The last point that should be addressed is the student system gaming behavior. Prior 
studies on this topic tended to focus on discouraging student gaming behaviors by 
upgrading the feedback systems, or understanding student motivations to game feed-
back systems (Baker et al., 2008). Few studies studied the design of feedback itself in the 
context of computing education. Restricting the information delivered by the feedback is 
believed as one conventional approach to discourage system gaming behaviors. 
However, we found that when feedback was very restrictive, it may incite trial and error 
behaviors. In contrast, we also observed that students did not abuse one-level hints. Many 
prior studies observed that multi-leveled feedback tended to be abused by students, 
especially when the low-level feedback was very close to direct answers. A fair question 
that future studies can ask is whether the design of feedback delivery may cause student 
gaming behaviors. The understanding of whether and how feedback design contributes 
to system gaming behaviors will help us focus on the essential development of effective 
feedback systems.

6. Limitations

Our study is not without limitations. First, this study was conducted as a quasi-controlled 
experiment in only one higher education institute with 76 participants. Although this 
number is sufficient for a three-group controlled experiment, the sample size is still 
comparatively small. It is also unclear whether the findings can be scaled to a bigger 
population. To further verify the generalizability of our findings, future studies may 
consider exploring the possibility of randomized controlled experiments, and replicating 
our studies across multiple higher education institutes. Second, our implementation of 
KCR feedback might not be a direct interpretation of the concept of KCR proposed by 
Narciss and Huth (2004). It is natural to interpret KCR feedback for a unit testing as the 
correct solution, or the functioning code of the required method. We did not provide such 
as the KCR feedback. Instead, we provided the input and the contrasts between the actual 
and expected output. Although our implementation allows room for students to make 
improvements and try again based on the KCR feedback, it may not strictly adhere to the 
feedback classification system proposed by Narciss and Huth (2004). Third, some factors 
were not controlled or could not be strictly controlled. Although the teaching assistants 
that facilitate lab sections went through the same training, their helpfulness and efficiency 
were not measured or compared. Students’ prior knowledge of the subject was not 
measured, and their demographic information was not collected. The lack of such data 
prevents the control of noises and further investigation into how students of different 
gender, race, or age interact with automated feedback systems differently. Future studies 
may consider collecting such data through surveys and aptitude tests (e.g., Smith IV et al., 
2019; Tukiainen & Mönkkönen, 2002), and provide a more fine-grained analysis of how 
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students’ prior knowledge and demographics influence their interactions with automated 
feedback, especially automated feedback of different designs. Fourth, we performed log 
transformation on student data to meet the expected assumptions of the adopted 
statistical analysis, which risks lessening the interpretativity of the effective sizes. Last, 
how different designs of automated formative feedback impact student knowledge 
transfer was not investigated in this study. Effective knowledge transfer is the ultimate 
goal of learning and teaching. Future studies may consider investigating the impacts of 
designs of automated feedback on student knowledge transfer, building on top of a series 
of validity assessment of programming assignments and exams.

7. Conclusion

This study investigated the impacts of feedback design on the efficacy of automated 
feedback and how students interact with and perceive different feedback designs. The 
results revealed that feedback on correctness, if provided as the only type of feedback, 
may not be helpful to student learning, and may stimulate trial and error debugging 
behaviors. In contrast, feedback that addresses comparisons between expected and 
actual outputs was found significantly impactful on student learning, and sufficient for 
students to move forward for most problems. The results of this study contribute to a fine- 
grained understanding of feedback design, and provide insights into how we can improve 
the design of automated testing and feedback systems for programming assignments.
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