
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ncse20

Computer Science Education

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ncse20

Towards understanding the effective design of
automated formative feedback for programming
assignments

Qiang Hao , David H. Smith IV , Lu Ding , Amy Ko , Camille Ottaway , Jack
Wilson , Kai H. Arakawa , Alistair Turcan , Timothy Poehlman & Tyler Greer

To cite this article: Qiang Hao , David H. Smith IV , Lu Ding , Amy Ko , Camille Ottaway , Jack
Wilson , Kai H. Arakawa , Alistair Turcan , Timothy Poehlman & Tyler Greer (2021): Towards
understanding the effective design of automated formative feedback for programming assignments,
Computer Science Education, DOI: 10.1080/08993408.2020.1860408

To link to this article: https://doi.org/10.1080/08993408.2020.1860408

Published online: 31 Jan 2021.

Submit your article to this journal

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ncse20
https://www.tandfonline.com/loi/ncse20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08993408.2020.1860408
https://doi.org/10.1080/08993408.2020.1860408
https://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08993408.2020.1860408
https://www.tandfonline.com/doi/mlt/10.1080/08993408.2020.1860408
http://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2020.1860408&domain=pdf&date_stamp=2021-01-31
http://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2020.1860408&domain=pdf&date_stamp=2021-01-31

ARTICLE

Towards understanding the effective design of automated
formative feedback for programming assignments
Qiang Hao a, David H. Smith IVa, Lu Dingb, Amy Koc, Camille Ottawaya, Jack Wilsona,
Kai H. Arakawaa, Alistair Turcana, Timothy Poehlmana and Tyler Greera

aComputer Science & SMATE, Western Washington University, Bellingham, WA, US; bFaculty Development
and Innovation Center, Eastern Illinois University, Charleston, IL, US; cThe Information School, University of
Washington, Seattle, WA, US

ABSTRACT
Background and Context: automated feedback for programming
assignments has great potential in promoting just-in-time learning,
but there has been little work investigating the design of feedback
in this context.
Objective: to investigate the impacts of different designs of auto-
mated feedback on student learning at a fine-grained level, and
how students interacted with and perceived the feedback.
Method: a controlled quasi-experiment of 76 CS students, where
students of each group received a different combination of three
types of automated feedback for their programming assignments.
Findings: feedback addressing the gap between expected and
actual outputs is critical to effective learning; feedback lacking
enough details may lead to system gaming behaviors.
Implications: the design of feedback has substantial impacts on
the efficacy of automated feedback for programming assignments;
more research is needed to extend what is known about effective
feedback design in this context.

ARTICLE HISTORY
Received 1 April 2020
Accepted 3 December 2020

KEYWORDS
Automated feedback;
formative feedback;
programming assignments;
system gaming behavior

1. Introduction

Providing timely feedback to student programming assignments is a challenging task for
computing educators. On the one hand, the nature of code makes programming assign-
ments challenging to assess. For the same programming assignment, many problem-
solving strategies may be available for students to use, and very different code may
achieve the same purpose (Kinnunen & Simon, 2012). Different individual coding habits
and styles only exacerbate the challenge. Instructors typically need to test a student’s
code against a large number of testing cases to draw a solid conclusion on its correctness.
On the other hand, the fast increasing CS enrollment substantially lowers instructor-to-
student ratios and increases the workload of instructors (Camp et al., 2017; Greer et al.,
2019; Sax et al., 2017). For instance, undergraduate CS enrollment has doubled from 2011
to 2017 in U.S. colleges, while the number of CS instructors grows at a significantly slower
rate (Computing Research Association, 2017; Hao et al., 2019a). As a result, it is more

CONTACT Qiang Hao Email qiang.hao@wwu.edu Western Washington University, Bellingham, WA, US.
Present affiliation for Camille Ottaway is FDSST Public Schools, Denver, Colorado.

COMPUTER SCIENCE EDUCATION
https://doi.org/10.1080/08993408.2020.1860408

© 2021 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0001-6361-5035
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2020.1860408&domain=pdf&date_stamp=2021-01-25

challenging for CS instructors to allocate sufficient time to assess and provide feedback
for programming assignments.

Feedback can be a powerful learning intervention when used effectively. Decades of
educational research have demonstrated consistent efficacy of feedback in improving
student learning performance. Depending on the delivery time, feedback can be classified
into two types: summative and formative feedback. Summative feedback is provided to
learners along with the assessment results, while formative feedback is provided during
the learning process before the assessment results are given (Brinko, 1993; Gielen et al.,
2010). Formative feedback has been constantly found to be more effective than summa-
tive feedback across different fields (Saifi et al., 2011; Yorke, 2001, 2003). (Black & Wiliam,
2009) reported that formative feedback, as one of the most effective educational inter-
ventions, produced learning gains with stable effect sizes between 0.4 and 0.7. Formative
feedback works better because it can help learners understand where they are in their
learning, where they are going, and how to get there (Nicol & Macfarlane-Dick, 2006;
Sadler, 1989).

Given the benefits of formative feedback, computing educators and researchers have
studied how to automate the process of grading programming assignments and provid-
ing formative feedback to students for more than two decades. Automated grading
systems have been developed, implemented, and evaluated (Chen, 2004; Keuning et al.,
2018; Parihar et al., 2017). These systems benefit both students and instructors. Using
these systems, students can submit their programming assignments numerous times
before the deadlines and get feedback for further improvements to their code or fixing
mistakes, promoting just-in-time learning (Chow et al., 2017; Ihantola et al., 2010; Parihar
et al., 2017; Pears et al., 2007). These systems can also allow instructors to save substantial
time from grading programming assignments manually, and focus on the pedagogical
design of the courses (Cheang et al., 2003; Pears et al., 2007; Vujošević -Janičić et al., 2013).

Despite the contributions from prior studies on automated feedback, few studies have
explored the design of formative feedback for programming assignments empirically.
Automated feedback is powerful, but also substantially less adaptive compared with
human helpers. When human helpers are present, back-and-forth communication is
used to help novice learners by clarifying confusions, adapting student questions, and
diagnosing student learning gaps (Hao et al., 2016; Smith IV et al., 2020). In contrast,
automated feedback is typically delivered as information for learners to digest and absorb
with little to no communication capacity. As a result, the information contained in
automated feedback needs to be carefully designed to realize its full potential. In addition,
proposals to limit information in automated feedback need further verification from
empirical studies. For instance, a widespread concern with automated feedback systems
is that formative feedback may encourage students to abuse the automated systems
(Chen, 2004; Guerreiro & Georgouli, 2006; Ihantola et al., 2010). One common practice to
address this issue is to limit the information contained in automated formative feedback.
However, there is little evidence supporting the efficacy of such practices. Understanding
the designs of feedback based on solid evidence is critical to strengthening the effective-
ness of automated feedback systems.

To fill this gap, this study explored the efficacy of different types of formative feedback
on student learning in the context of automated feedback for programming assignments
through a controlled quasi-experiment. This study contributes to a deeper understanding

2 Q. HAO ET AL.

of the designs of automated feedback, which in turn informs the design of automated
feedback systems.

2. Background

2.1. Design of formative feedback

Feedback, as a powerful educational intervention, has been studied extensively in the last
three decades (Hattie & Gan, 2011; Van der Kleij et al., 2015). Numerous models of
feedback were proposed from different perspectives, such as the role of feedback in the
learning process, the impacts of feedback on student performance, classification of feed-
back, and contributing factors to effective feedback (Boud & Molloy, 2013; Butler & Winne,
1995; Evans, 2013; Ihantola et al., 2015; Kluger & DeNisi, 1996; Pardo, 2018; Shute, 2008).

One of the most comprehensive conceptual analysis of feedback was provided by
Hattie and Timperley (2007). The authors proposed a feedback model centered around
reducing the gap between students’ actual performance and expected performance
through three questions: where am I going, how am I going, and where to next. Based
on the model, the authors further proposed a feedback classification with four levels: task,
process, regulation, and self. Feedback at the task level is about how well a task is being
accomplished or performed. An example of feedback at this level is the information on
whether an answer is correct. Feedback at the process level defines what is needed in
order to finish the task. Hints can generally be considered feedback at the process level.
Feedback at the regulation level refers to suggestions on how to self-regulate the learning
process. Feedback at the self level is about the characteristics of the learner. Feedback at
the self level has been found to be ineffective for student learning by many studies,
because it fails to address how to achieve the intended learning goals (Hattie & Timperley,
2007; Van der Kleij et al., 2012). It is worth noting that both the model and feedback
classification proposed by Hattie and Timperley (2007) are tailored to learning and
teaching in classroom settings, emphasizing the communication between students and
teachers. When the learning context changes and requires the interaction between
humans and machines, the proposed feedback system may not be perfectly applicable.
For instance, it is still tremendously difficult for any intelligent learning systems to perform
back-and-forth communications with learners, let alone providing useful feedback at the
regulation and self levels.

The development of learning technologies enabled feedback to be provided automa-
tically in a scalable approach. However, automated feedback tends to lack the ability to
adapt to students on an individual basis in the way that human helpers can. Therefore,
how to optimize the design of automated feedback in the context of computer-based
instruction attracted substantial attention from researchers. Narciss and Huth (2004)
proposed a notable feedback classification specific to learning tasks in this context.
Three levels of feedback are included in this classification, including knowledge of results
(KR), knowledge of correct responses (KCR), and elaborated feedback (EF). KR feedback
refers to the information on correctness. For example, error flagging that only shows
where the error is located but does not show additional information is a type of KR. KCR
feedback provides the correct answer to the problem. EF feedback provides a detailed
explanation and even hints to fix the identified problems in student answers. Hundreds of

COMPUTER SCIENCE EDUCATION 3

studies adopted this feedback classification to investigate the impacts of varied forms of
feedback on student learning (Lee et al., 2010; McMillan et al., 2013). Van der Kleij et al.
(2015) synthesized 40 studies that adopted this feedback classification, and found that EF
in particular was more effective than KR and KCR for higher-order learning outcomes, and
confirmed that the feedback classification proposed by Narciss and Huth (2004) provided
a theoretical foundation for studying the designs of feedback in the context of computer-
based instruction. This perspective of seeing feedback as information that can be
designed has profound impacts on research on feedback, learning systems, and intelli-
gent tutors across different educational fields (e.g., Alvarez et al., 2012; Fyfe & Rittle-
Johnson, 2016; Van der Kleij et al., 2015).

Additionally, a large body of research has investigated what characteristics of feedback
contribute to its effectiveness from the perspective of information design. Three factors,
including student prior knowledge, tasks, and the design of feedback were found most
important for the efficacy of feedback (Narciss & Huth, 2004; Narciss et al., 2014; Shute,
2008). In order for feedback to be effective, four conditions need to be met: 1) the
students need the feedback, 2) the students have sufficient time to process the feed-
back, 3) the students are willing to use the feedback, and 4) the students are able to make
sense of the feedback (Bangert-Drowns et al., 1991; Stobart, 2008). Different designs of
feedback may also impact its efficacy. For instance, specificity is one of the design aspects
that have been studied intensively. Specificity is needed for effective information delivery.
Feedback lacking specificity is more likely to result in frustration and loss of motivation
(Van Merrienboer & Sweller, 2005). Nevertheless, feedback that is too specific and com-
plex may also risk overwhelming students (Serge et al., 2013).

2.2. Auto-grading and auto-feedback systems

Programming assignments are challenging to grade and to provide feedback on manu-
ally. When class sizes grow fast, this problem can be even more challenging to tackle.
Therefore, how to automate the process of grading assignments and providing feedback
to students has attracted many researchers from different fields, such as computing
education and software engineering Cassel and Fox (2000).

Early studies on the topic of automated grading and feedback mainly focused on
developing and testing automated grading systems because performing assessments in
a timely manner is more important for instructors to perform their essential duties than
to provide informative feedback. Therefore, the focus on automated feedback was
sidelined at first. Furthermore, many studies expressed concerns that automation may
incite students to abuse the feedback system (Cheang et al., 2003; Chen, 2004;
Guerreiro & Georgouli, 2006; Ihantola et al., 2010). Several measurements were pro-
posed to discourage potential “system gaming behaviors”, such as providing only
summative feedback, limiting the number of submission attempts, and limiting the
feedback content (Chow et al., 2017; Daly & Horgan, 2004; Keuning et al., 2018; Pieterse,
2013). System gaming behaviors are a reasonable concern if hints revealing direct
answers can be easily accessed by students. However, feedback is not only limited to
hints. For instance, correctness, as a type of feedback, has been found positively
impactful to learning if it is given before the summative assessment (Ala-Mutka, 2005;
Alemán, 2010).

4 Q. HAO ET AL.

Continued research on this topic in the last decade led to the development of
a number of tools focusing on providing students with feedback on their programming
process. How to effectively generate automated feedback was the major focus of these
studies (Luxton-Reilly et al., 2018). Web-CAT, a representative system developed in the
early days, has evolved into an online automated feedback system that served more than
30 institutions in the U.S. (Edwards & Perez-Quinones, 2008). Bluefix, an extension of BlueJ
IDE, provided programming students error diagnosis and repair feedback based on
crowd-sourced information (Watson et al., 2012). Neve et al. (2012) attempted to provide
in-lab tutor-student dynamic interaction specific to programming through an online
coding environment. Additionally, research on enhanced compiler error messages and
student misconceptions also provided valuable findings that contribute to this topic
(Becker et al., 2019). For instance, Karvelas et al. (2020) found that compilation mechan-
isms and error message presentation had substantial impacts on the programming
behaviors of novice learners, which indicates that more human-computer interaction
research on the design of automated feedback systems is needed. Hao and Tsikerdekis
(2019) studied using the existing infrastructure of continuous integration tools to provide
students with automated feedback and attempted to examine its impacts on student
knowledge transfer. Gusukuma et al. (2020) studied decoupling the modules of conven-
tional automated feedback systems such as type inferencing, flow analysis, pattern
matching, and unit testing.

Recent studies on the topic of automated feedback have shifted the focus to studying
data-driven approaches to test and provide feedback on students’ code (Chow et al., 2017;
Parihar et al., 2017; Price et al., 2018; Vujošević -Janičić et al., 2013). The data-driven
approaches include clustering, filtering, and pattern mining (Gao et al., 2016; Head et al.,
2017). Such approaches typically depend on a massive number of student submissions,
and aim to provide students suggestions on repairing their code by measuring the
distance between exemplary code and individual students’ code (Drummond et al.,
2014; Gulwani et al., 2018; Wang et al., 2018). Such approaches still require testing in an
authentic environment and need further investigation on their reliability on smaller
datasets. CLuster And RepAir tool (CLARA) is a representative system investigated by
recent studies on this topic. CLARA leverages the “wisdom of the crowd” by extracting
programs that pass test cases, clustering them based on approach similarity, comparing
working programs to nonworking ones (Gulwani et al., 2018). Although CLARA was tested
in the context of MOOCs where a massive number of student code submissions are
available, whether it works in the context of face-to-face classrooms is still unknown.

Despite the advances in feedback generation approaches, few studies investigated the
designs of feedback in the context of computing education from the perspective of
information design. There is strong evidence from other disciplines that feedback can
be designed and delivered in different ways, and such differences may render different
influences on student performance (Alvarez et al., 2012; Fyfe & Rittle-Johnson, 2016; Van
der Kleij et al., 2015). The meta-analysis study of Keuning et al. (2018) was the first that
investigated automated feedback using the perspective of information design in comput-
ing education, where Keuning et al. (2018) attempted to classify existing automated
feedback tools using the feedback classification proposed by Narciss and Huth (2004).
Studies investigating a specific design of automated feedback design are abundant
(Hundhausen & Brown, 2007; Nygren et al., 2019). However, empirical studies that

COMPUTER SCIENCE EDUCATION 5

compared different automated feedback designs from the perspective of information
design are rare in computing education (Luxton-Reilly et al., 2018). Hao et al. (2019b)
examined the efficacy of different designs of automated feedback for programming
assignments by comparing the efficacy of correctness, knowledge gap, and hints on
student comprehension and problem-solving of complex programming assignments,
and found addressing the knowledge gap is critical to improve student learning.
However, their findings were limited by the small sample size and a lack of theoretical
framework. A deeper understanding of how different types of feedback impact student
learning is critical to guide system design and development, and is likely to have direct
impacts on student learning (Keuning et al., 2018).

3. Research design

3.1. Research question

The following questions guided our study:
(1) How do different types of automated formative feedback impact student perfor-

mance on programming assignments?
(2) How do different types of automated formative feedback impact student interac-

tion with the automated feedback system?
(3) How do students perceive different types of automated formative feedback?

3.2. System design

For this study, we implemented an automated formative feedback system utilizing three
technologies that are popular with programming courses, including GitHub, Gradle, and
Travis-CI. GitHub (github.com) is a version-control code repository hosting service. We
used GitHub to host student programming assignments. Students were instructed to
commit and push their code once they reached a self-determined milestone from the
beginning of the course. Gradle (gradle.org) is an open-source build automation system
for Java programming. Travis-CI (travis-ci.com) is a continuous integration service used to
build and test software projects hosted at GitHub. We used Gradle and Travis-CI to build,
test, and provide feedback to student programming assignments hosted on GitHub.

The combination of GitHub, Gradle, and Travis-CI is capable of providing students
automated formative feedback without being obtrusive to their learning experience.
Nearly all tested automated feedback systems belong to pull technologies (e.g., Web-
CAT, AutoLab) (Kendall & Kendall, 1999). Such systems are not an integral part of the
coding, debugging, and testing process when students work on programming assign-
ments (Parihar et al., 2017). Students need to submit their code manually every time if
they seek automated feedback. If students fail to utilize such systems until it is too late, it
will substantially reduce the effectiveness of formative feedback, or even become simply
summative (Hao et al., 2019b). Although IDE plugins do exist for platforms such as Web-
CAT they lack the utility of Git and force students to use the tools with which they are
compatible. In contrast, the combination of GitHub, Gradle, and Travis-CI belongs to push
technologies (Kendall & Kendall, 1999). Git, as a version control system adopted by
GitHub, is an integral part of students’ coding process. When students push their code

6 Q. HAO ET AL.

to GitHub, it will trigger Travis-CI to test the pushed code and push formative feedback to
students. The architecture of the automated feedback system based on GitHub, Gradle,
and Travis-CI is presented in Figure 1. The feedback associated with each push will be
displayed and archived on the Travis-CI website (see Figure 2).

Figure 1. The architecture of automated feedback system based on GitHub and Travis-CI.

Figure 2. A partial screenshot of what a student sees on the Travis-CI website.

COMPUTER SCIENCE EDUCATION 7

3.3. Experiment design

To answer the first two research questions, we conducted a controlled experiment on 76
students taking a CS2 course in a large university in the Pacific Northwest of the United
States. The course (and the study) ran for 10 weeks, and is composed of three 50-min
lectures and two 90-min lab sections per week.

Each student was required to finish three complex individual programming assign-
ments during the lab sections. Each programming assignment required about 50 to 300
lines of code to complete. Each assignment was designed to have students complete a set
of functions and apply these functions in the main program. Automated feedback was
provided on both the individual functions implemented by students and the main
program with randomized input data (see Figure 3 for an example). Student performance
on each assignment is determined by the percentage of test cases that are passed.

Setting up different types of formative feedback is essential to answer the first two
research questions. Given the same unit test, we prepared a collection of automated
feedback based on different input data by using both the representative edge cases and
randomly generated data. In terms of the designs of the feedback, we adopted the
feedback classification of Narciss and Huth (Narciss & Huth, 2004), developing three
types of feedback per unit test: knowledge of results (KR), knowledge of correct responses
(KCR), and elaborated feedback (EF).

To form groups for the controlled experiment, we took advantage of the setups of the
pre-existing lab sections. Before the course started, students enrolled in this course were
randomly assigned to one of the three different lab sections which they exclusively
attended for the entire semester. Each lab section was facilitated by a teaching assistant;
all teaching assistants went through the same training before the course. This setup

Figure 3. An example of feedback from multiple unit testing.

8 Q. HAO ET AL.

helped minimize possible communication across lab sections as the student body for each
section was consistent throughout the quarter. Therefore, we treated students in a lab
session as a group and provided each group with different types of automated feedback:

• Group KR (25 students): KR
• Group KCR (25 students): KR + KCR
• Group EF (26 students): KR + KCR + EF
The KR was implemented as the information indicating if a test case passed or failed.

The KCR feedback was implemented as the input and contrasts between the expected
output and actual output. The EF feedback was implemented as a one-level hint that
addresses the top five mistakes summarized from student code submissions in the prior
three quarters. If the mistake can be mapped to a misconception, the hint would be
coupled with more explanations that addressed the misconception. We loosely followed
the guidelines of Haldeman et al. (2018) in our implementation of the EF feedback. An
example of the feedback each group received on the same function is presented in
Figure 4.

It is worth noting that we did not set up a group receiving no automated feedback or
a group receiving the combination of KR and EF. There is abundant evidence that
providing some feedback is always more beneficial to student learning as long as the
feedback does not confuse students further (Higgins et al., 2002; Juwah et al., 2004;
Parihar et al., 2017). Without KCR feedback, the combination of KR and EF may make
less sense to students, and the effects of EF might be substantially reduced in this case.
Without knowing the gap between the expected and actual results, hints can do little to
direct students in the right direction. The ultimate goal of this study is to understand what
feedback has the greatest impact on student learning, and use this understanding to

Figure 4. An example of different feedback configurations for a method.

COMPUTER SCIENCE EDUCATION 9

guide the design and improvement of automated feedback systems. The possible group
configurations, such as receiving no automated feedback or receiving the combination of
KR and EF are not the best options to help achieve the goal. As a result, we did not include
the two possible groups in our research design.

3.4. Data collection

To answer the first research question “How do different types of automated formative
feedback impact student performance on programming assignments?”, we collected stu-
dent performance on all three programming assignments.

In answering the second research question “How do different types of automated
formative feedback impact student interaction with the automated feedback system?”, we
collected the following student behavior data through APIs of GitHub and Travis-CI:

• Timestamps: Timestamps of pushes per student per assignment.
• Efforts: Number of lines changed since the last push per student per assignment.
• Automated testing results: Which test cases are passed per push per student per

assignment.
Finally, to answer the third research question “How do students perceive different types

of automated formative feedback?”, we surveyed all students by the end of the course
using four questions:

• How often did you use the feedback from Travis-CI?
• What do you do when you find you have failed a test case on Travis-CI? Describe your

experience of utilizing the feedback from Travis-CI.
• What do you like about the automated feedback from Travis-CI?
• What do you dislike about the automated feedback from Travis-CI? How do you want

us to improve it?

4. Results

4.1. How do different types of automated formative feedback impact student
performance on programming assignments?

We summarized the performance comparisons among the three groups’ programming
assignment in Table 1. Students in Group EF seem to have better performance than in
Group KCR and KR, while students in Group KCR seem to have better performance than in
Group KR.

To gain insights into this group performance differences over time, we plotted student
progress over time by group. Student progress can be evidenced by the average percen-
tage of passed test cases. For instance, when we plotted student progress of Assignment 2

Table 1. Average student performance by group and by assignment.
Assignment Averages

Assignment 1 Assignment 2 Assignment 3

Group KR 75.30 77.45 67.50
Group KCR 91.75 85.59 84.29
Group EF 92.44 89.65 90.65

The total of each assignment is 100.

10 Q. HAO ET AL.

by group, we found that Group KR tended to make progress more slowly than their
counterparts in Group KCR and EF, and did not pass as many test cases as Group KCR and
EF by the deadline either (see Figure 5). A similar pattern was found in Assignment 1
and 3.

To quantify the observed pattern, we performed One-Way Multiple Analysis of Variance
(MANOVA) to examine the student performance differences on the three assignments
across three groups. To address the possible issue of bimodal performance in CS courses,
we performed log transformation on the data of student assignment performance first.
The Shapiro–Wilk test yielded a non-significant result (p > 0.05), indicating that the
transformed data is normally distributed. The Variance Inflation Factors (VIF) of student
performance of the three assignments were all smaller than 2.5, indicating a mild correla-
tion among student performance across assignments. Box’s test yielded a non-significant
result (p = 0.19), indicating that the homogeneity of variance-covariance matrices could
be assumed.

The results of MANOVA indicated a significant difference [Wilk’s Λ = 0.45, F(2, 73) = 9.12,
and p < 0.001]. To understand which two groups had significantly different performance,
we followed up MANOVA with discriminant analysis, which revealed two discriminant
functions. The first function explained 95.0% of the variance, canonical R2 = 0.69, whereas
the second explained 2.0%, canonical R2 = 0.15. In combination, these discriminative
functions significantly differentiated Group KR from Group KCR/EF [Λ = 0.43, χ2 = 44.17, p
< 0.001], but removing the first function indicated that the second function did not
significantly differentiate the remaining two groups [Λ = 0.91, χ2 = 1.27, p > 0.5]. In
summary, the significant differences detected by MANOVA only existed between Group
KR and Group KCR/EF.

Figure 5. Percentage of passed test cases by group on Assignment 2.

COMPUTER SCIENCE EDUCATION 11

4.2. How do different types of automated formative feedback impact student
interaction with the automated feedback system?

To answer the second research question, we studied (a) student efforts on each program-
ming assignment over time and (b) the behaviors of seeking automated feedback by
group. Student efforts were evidenced by the number of changed lines of code on a daily
basis. When aggregated, student efforts per assignment showed largely the same pattern.
Students tended to make little to moderate efforts in the early stage after an assignment
was given, stagnate in the middle stage, and make a tremendous amount of effort
towards the due dates. However, we did not see any obvious differences across groups
in terms of student efforts (see Figure 6). We followed up this observation with MANOVA
on averaged student efforts but did not find statistically significant results either [F(2,
73) = 1.35, and p > 0.05].

Student feedback-seeking behaviors were inferred from student actions of pushing
their code to GitHub, which will trigger the automated testing and feedback to be sent to
students. When aggregated, student feedback-seeking behaviors showed inconsistent
patterns across the assignments. Students from Group KR seemed to seek more feedback
than their counterparts in Group KCR and EF on the last two assignments, but a similar
amount of feedback on the first assignment (see Figure 7).

We followed up the above observation with MANOVA to quantify the differences in
student feedback-seeking behaviors. The results of MANOVA indicated a significant dif-
ference [Wilk’s Λ = 0.37, F(2, 73) = 5.36, and p < 0.05]. Discriminant analysis was used to
determine where the difference was. Two discriminant functions were built. The first
function explained 91.0% of the variance, canonical R2 = 0.16, whereas the second
explained 6.0%, canonical R2 = 0.01. In combination, these discriminative functions
significantly differentiated Group KR from Group KCR/EF [Λ = 0.89, χ2 = 21.29, p <
0.05], but removing the first function indicated that the second function did not signifi-
cantly differentiate the remaining two groups [Λ = 0.96, χ2 = 1.31, p > 0.05]. In summary,
the significant differences detected by MANOVA only existed between Group KR and
Group KCR/EF.

Figure 6. Number of changed lines of code by group per assignment.

12 Q. HAO ET AL.

4.3. How do students perceive different types of automated formative feedback?

To understand student perception of automated formative feedback, we analyzed stu-
dent answers to the three survey questions. Question 1 adopted a four-point Likert scale
to assess the degree to which students utilized the automated formative feedback pushed
from Travis-CI. We used the chi-square test to compare student answers to this question
across groups. Questions 2 to 4 were open-ended. We applied grounded theory analysis
to the answers to the three questions, starting with open coding, moving to axial coding
sequentially (Corbin & Strauss, 2008). We summarized the analysis results and identified
themes in the following sections.

4.3.1. Question 1: how often did you use the feedback from Travis-CI?
For the first question, we used a four-point Likert scale to assess the degree to which
students utilized the automated formative feedback pushed from Travis-CI. The responses
from students are summarized in Figure 8. Overall, students across all groups reported
that they utilized formative feedback frequently. Although students from Group EF were
on the higher end of the scale, we did not find any significant differences between groups
using the Chi-squared test [χ2ð6; 73Þ ¼ 2:89; p > 0:05].

4.3.2. Question 2: What do you do when you find you have failed a test case on
Travis-CI? Describe your experience of utilizing the feedback from Travis-CI
We identified a single theme with five steps in terms of how students utilize automated
formative feedback from student responses across the three groups: (1) Analyze Travis’s
output and attempt to understand the cause of the error, (2) Identify the location within
the source code responsible for the error, (3) Attempt a fix, (4) Push changes to Travis, and
(5) Repeat until all test cases are passed. It is worth noting that many students mentioned
that they would reference outside sources such as StackOverflow (stackoverflow.com) to
help understand the feedback if there was a bug in their code. Several students from
Group KR mentioned that they had a difficult time figuring out why they failed a test case
or needed to develop their own test cases, but no students from Group KCR or EF
mentioned the same experience.

Figure 7. Feedback-seeking frequencies by group per assignment.

COMPUTER SCIENCE EDUCATION 13

4.3.3. Question 3: what do you like about the automated feedback from Travis-CI?
We identified two major themes from student responses across the three groups, includ-
ing the positive psychological effects and unobtrusiveness of the feedback system to their
learning experience. On the unobtrusiveness of the feedback system, many students
mentioned that they felt that they were with a tutor that could tell them what went
wrong constantly without interfering with their learning experience. One student men-
tioned that “the system creates a cohesive and supportive environment . . . “. On the
positive psychological effects, many students commented on the satisfaction they had
when automated feedback indicated that they had passed all test cases. One student said
“ . . . when I turn in a lab on Travis it gives me peace of mind that I’ll get a good grade on
the assignment . . . ”. Another student stated that “It felt good to see the green light on
Travis (that indicates all test cases are passed) . . . ”.

4.3.4. Question 4: What do you dislike about the automated feedback from
Travis-CI? How do you want us to improve it?
We identified two major themes and a notable difference between Group KR and Group
KCR/EF. The two themes include the speed of the system and the capability of the system
to allow users to add test cases. On the capability of the system to allow users to add test
cases, many students expressed that they wished the system could take the test cases
they wanted to add.

On the speed of the system, many students expressed that sometimes it took too long
(up to tens of minutes) for them to get the automated feedback (after they pushed their
code to GitHub). Despite the numerous advantages of the implemented system (e.g., cost-
free, replicability), it is running on one single-threaded build service that will queue all
tests that need to be performed. We observed that students tended to procrastinate in
the beginning, and did not start committing more time and effort to work on the

Figure 8. Frequency of utilizing automated formative feedback by group.

14 Q. HAO ET AL.

assignments when due dates were approaching. This will end up with many testing tasks
queued by the system, and delay the system from pushing feedback to all students from
instantly to tens of minutes.

The major difference we identified between groups is the difficulty in interpreting the
automated feedback. Many students from Group KR complained about the difficulties in
interpreting the feedback. One student commented that “. . .I know that I failed a test case,
but I don’t know where I was wrong . . .”. In contrast, we can not find a similar complaint in
the answers from Group KCR and EF.

5. Discussion

5.1. Impacts of different types of feedback on student learning

We investigated the degree of differential performance that exists between three groups,
each provided with one of the following feedback categories:

(1) Knowledge of Results (KR): feedback includes information on what test cases failed.
(2) Knowledge of Correct Responses (KCR): KR + Additional information on where in the

test case the failure occurred.
(3) Elaborated Feedback (EF): KCR + A hint regarding what the student might need to do

to fix their code.
Among all the findings, we would like to highlight two results of the impacts of

different types of feedback on student learning and student perception towards the
feedback.

Across three complex programming assignments, we found that students who
received higher levels of feedback (KCR and EF) outperformed their counterparts who
received only KR feedback significantly. This result is consistent with research on feedback
design in other contexts (Hattie & Timperley, 2007; Van der Kleij et al., 2012), and partially
confirmed the findings of Hao et al. (2019b). Additionally, we found that students receiv-
ing only KR feedback tended to complain more about the difficulties in interpreting the
feedback, and seek feedback more frequently than students receiving higher levels of
feedback. At first glance, it may seem counterintuitive that the group that complained the
most about feedback sought feedback most frequently. Early studies on this topic raised
concerns of students abusing automated feedback over similar observations (Cheang
et al., 2003; Chen, 2004; Guerreiro & Georgouli, 2006). Without questioning the efficacy of
the feedback, we may reach a similar conclusion. However, when we put these results
together with the evidence on student performance differences, it helps us gain a deep
understanding of the efficacy of feedback on correctness. A more reasonable interpreta-
tion is that the low interpretability of KR feedback leads to difficulty in effective debug-
ging, which in turn leads to more trial and error behaviors in testing.

We found insignificant performance differences between students receiving KCR feed-
back and students receiving both KCR and EF feedback. There are two possible inter-
pretations for this result:

• KCR feedback is sufficient for most cases: The comparison between expected and actual
outputs can inform students of both where they are currently and where the destination is
(Nicol & Macfarlane-Dick, 2006; Sadler, 1989). With these two pieces of information, students
are able to figure out how to get to the destination from their current positions. If this is true,

COMPUTER SCIENCE EDUCATION 15

hints and more detailed explanations might not be needed for every problem students
encounter. Providing hints and more detailed explanations that effectively address learning
misconceptions could be either computationally expensive or require great attention from
human instructors (Hao et al., 2019b). If some bottlenecks or the most challenging compo-
nents of a given problem can be identified as worthy of hints and detailed explanations, it will
be more efficient in terms of either computational power or instructors’ time. Additionally,
providing KCR feedback without hints may strengthen student debugging skills because
conquering the problem means that students have figure out “how to get the destination
from where they are currently” (Nicol & Macfarlane-Dick, 2006). These are questions that need
to be answered by future studies on this topic.

• EF feedback needs further investigation: We loosely followed the guidelines of Haldeman
et al. (2018) in our implementation of the EF feedback, and only implemented the hints for
the top five most common mistakes. On the one hand, we found that one-level hints were not
significantly beneficial to student learning. On the other hand, students did not demonstrate
any evidence of abusing one-level hints. One-level hints do not risk revealing the direct
answers to students, but may also not be adaptive enough to help students overcome the
difficulties they meet. This may explain the findings of this study. Multi-leveled hints may be
more effective in helping students overcome difficulties, but may also lead students to game
the system by constantly accessing hints at deeper levels without a sincere effort in problem-
solving (Aleven et al., 2016; D Baker et al., 2006; Baker et al., 2008). Future studies may
consider comparing the efficacy of different designs on hints through controlled
experiments.

We do not yet have the evidence to distinguish which of these interpretations is a better
account for the results. However, we believe that more investigations to understand the
feedback design of effective automated feedback are necessary.

5.2. Feedback designs for automated testing and feedback systems

We have established that there is a necessity to understand the effects of different designs
of feedback, and use this knowledge to guide the design of automated testing and
feedback systems. Developing a stand-alone system that manages student programming
assignments and grades, tests student code, and provides feedback is challenging and
also requires a significant amount of maintenance effort. Therefore, many of the auto-
mated feedback systems reported in prior studies are no longer accessible to the public.
Future development efforts may consider taking advantage of the existing services that
are popular in programming courses (e.g., GitHub) and adopting the paradigm of micro-
services (Hao & Tsikerdekis, 2019). As such, the development efforts could solely focus on
automated testing and feedback.

Effective feedback design may need to find a balance between providing adaptive help
and being cost-effective. The findings of this study can provide guidance on this challenge.
Simple feedback can be effective. However, to realize its full potential, the information of
feedback should not be restricted to the extent of being difficult to interpret. Standing
alone, KR feedback is not very helpful to student learning. However, KR and KCR feedback,
when combined, can be positively impactful. Based on the findings of this study, we would
recommend that the minimum amount of information automated feedback covers to
include both correctness and the gap between expected and actual outputs.

Despite of the recent advances in automatic generation of adaptive feedback, it is still
extremely challenging to generate hints and detailed explanations that address student

16 Q. HAO ET AL.

learning misconceptions automatically. The techniques of automatic feedback generation
typically require a massive amount of student code submissions, which further limits their
application in authentic educational settings (Gulwani et al., 2018; Wang et al., 2018). The
findings of our study provide practical guidelines for the scenario where automatic
generation of hints and detailed explanations is too difficult or not possible – KR and
KCR feedback, without hints and detailed explanations, can still help students sufficiently
on many components of problem-solving.

The last point that should be addressed is the student system gaming behavior. Prior
studies on this topic tended to focus on discouraging student gaming behaviors by
upgrading the feedback systems, or understanding student motivations to game feed-
back systems (Baker et al., 2008). Few studies studied the design of feedback itself in the
context of computing education. Restricting the information delivered by the feedback is
believed as one conventional approach to discourage system gaming behaviors.
However, we found that when feedback was very restrictive, it may incite trial and error
behaviors. In contrast, we also observed that students did not abuse one-level hints. Many
prior studies observed that multi-leveled feedback tended to be abused by students,
especially when the low-level feedback was very close to direct answers. A fair question
that future studies can ask is whether the design of feedback delivery may cause student
gaming behaviors. The understanding of whether and how feedback design contributes
to system gaming behaviors will help us focus on the essential development of effective
feedback systems.

6. Limitations

Our study is not without limitations. First, this study was conducted as a quasi-controlled
experiment in only one higher education institute with 76 participants. Although this
number is sufficient for a three-group controlled experiment, the sample size is still
comparatively small. It is also unclear whether the findings can be scaled to a bigger
population. To further verify the generalizability of our findings, future studies may
consider exploring the possibility of randomized controlled experiments, and replicating
our studies across multiple higher education institutes. Second, our implementation of
KCR feedback might not be a direct interpretation of the concept of KCR proposed by
Narciss and Huth (2004). It is natural to interpret KCR feedback for a unit testing as the
correct solution, or the functioning code of the required method. We did not provide such
as the KCR feedback. Instead, we provided the input and the contrasts between the actual
and expected output. Although our implementation allows room for students to make
improvements and try again based on the KCR feedback, it may not strictly adhere to the
feedback classification system proposed by Narciss and Huth (2004). Third, some factors
were not controlled or could not be strictly controlled. Although the teaching assistants
that facilitate lab sections went through the same training, their helpfulness and efficiency
were not measured or compared. Students’ prior knowledge of the subject was not
measured, and their demographic information was not collected. The lack of such data
prevents the control of noises and further investigation into how students of different
gender, race, or age interact with automated feedback systems differently. Future studies
may consider collecting such data through surveys and aptitude tests (e.g., Smith IV et al.,
2019; Tukiainen & Mönkkönen, 2002), and provide a more fine-grained analysis of how

COMPUTER SCIENCE EDUCATION 17

students’ prior knowledge and demographics influence their interactions with automated
feedback, especially automated feedback of different designs. Fourth, we performed log
transformation on student data to meet the expected assumptions of the adopted
statistical analysis, which risks lessening the interpretativity of the effective sizes. Last,
how different designs of automated formative feedback impact student knowledge
transfer was not investigated in this study. Effective knowledge transfer is the ultimate
goal of learning and teaching. Future studies may consider investigating the impacts of
designs of automated feedback on student knowledge transfer, building on top of a series
of validity assessment of programming assignments and exams.

7. Conclusion

This study investigated the impacts of feedback design on the efficacy of automated
feedback and how students interact with and perceive different feedback designs. The
results revealed that feedback on correctness, if provided as the only type of feedback,
may not be helpful to student learning, and may stimulate trial and error debugging
behaviors. In contrast, feedback that addresses comparisons between expected and
actual outputs was found significantly impactful on student learning, and sufficient for
students to move forward for most problems. The results of this study contribute to a fine-
grained understanding of feedback design, and provide insights into how we can improve
the design of automated testing and feedback systems for programming assignments.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes on contributors

Qiang Hao is an assistant professor of computer science & science education at Western
Washington University.

David H. Smith IVis a Ph.D. student at University of Illinois at Urbana-Champaign.

Lu Dingis an instructional designer at Eastern Illinois University.

Amy Ko is a professor of informatics at University of Washington Seattle.

Camille Ottaway is a computer science teacher at DSST Public schools in Denver, Colorado. Also,
Camille Ottaway is a research student that worked with Dr. Qiang Hao at Western Washington
University.

Jack Wilson is a research student that worked with Dr. Qiang Hao at Western Washington University.

Kai Arakawa is a research student that worked with Dr. Qiang Hao at Western Washington
University.

Alistair Turcan is a research student that worked with Dr. Qiang Hao at Western Washington
University.

Timothy Poehlman is a research student that worked with Dr. Qiang Hao at Western Washington
University.

Tyler Greer is a research student that worked with Dr. Qiang Hao at Western Washington University.

18 Q. HAO ET AL.

ORCID

Qiang Hao http://orcid.org/0000-0001-6361-5035

References

Ala-Mutka, K. M. (2005). A survey of automated assessment approaches for programming
assignments. Computer Science Education , 15(2), 83–102. https://doi.org/10.1080/
08993400500150747

Alemán, J. L. F. (2010). Automated assessment in a programming tools course. IEEE Transactions on
Education, 54(4), 576–581. https://doi.org/10.1109/TE.2010.2098442

Aleven, V., Roll, I., McLaren, B. M., & Koedinger, K. R. (2016). Help helps, but only so much: Research
on help seeking with intelligent tutoring systems. International Journal of Artificial Intelligence in
Education, 26(1), 205–223. https://doi.org/10.1007/s40593-015-0089-1

Alvarez, I., Espasa, A., & Guasch, T. (2012). The value of feedback in improving collaborative writing
assignments in an online learning environment. Studies in Higher Education, 37(4), 387–400.
https://doi.org/10.1080/03075079.2010.510182

Baker, R., Walonoski, J., Heffernan, N., Roll, I., Corbett, A., & Koedinger, K. (2008). Why students
engage in “gaming the system” behavior in interactive learning environments. Journal of
Interactive Learning Research, 19(2), 185–224.

Bangert-Drowns, R. L., Kulik, C.-L. C., Kulik, J. A., & Morgan, M. (1991). The instructional effect of
feedback in test-like events. Review of Educational Research, 61(2), 213–238. https://doi.org/10.
3102/00346543061002213

Becker, B. A., Denny, P., Pettit, R., Bouchard, D., Bouvier, D. J., Harrington, B.,. . .Kamil, A., Karkare, A.,
McDonald, C., Osera, P. M., & Pearce J. L. (2019). Unexpected tokens: A review of programming
error messages and design guidelines for the future. In Proceedings of the 2019 ACM Conference on
Innovation and Technology in Computer Science Education (pp. 253–254).

Black, P., & Wiliam, D. (2009). Developing the theory of formative assessment. Educational
Assessment, Evaluation and Accountability (Formerly: Journal of Personnel Evaluation in
Education), 21(1), 5. https://doi.org/10.1007/s11092-008-9068-5

Boud, D., & Molloy, E. (2013). Feedback in higher and professional education: Understanding it and
doing it well. Routledge.

Brinko, K. T. (1993). The practice of giving feedback to improve teaching: What is effective? The
Journal of Higher Education, 64(5), 574–593. https://doi.org/10.1080/00221546.1993.11778449

Butler, D. L., & Winne, P. H. (1995). Feedback and self-regulated learning: A theoretical synthesis.
Review of Educational Research, 65(3), 245–281. https://doi.org/10.3102/00346543065003245

Camp, T., Adrion, W. R., Bizot, B., Davidson, S., Hall, M., Hambrusch, S., Walker, E., & Zweben, S. (2017).
Generation cs: The growth of computer science. ACM Inroads, 8(2), 44–50. https://doi.org/10.
1145/3084362

Cassel, L., & Fox, E. (2000). Acm journal of education resources in computing. ACM.
Cheang, B., Kurnia, A., Lim, A., & Oon, W.-C. (2003). On automated grading of programming assign-

ments in an academic institution. Computers & Education, 41(2), 121–131. https://doi.org/10.1016/
S0360-1315(03)00030-7

Chen, P. M. (2004). An automated feedback system for computer organization projects. IEEE
Transactions on Education, 47(2), 232–240. https://doi.org/10.1109/TE.2004.825220

Chow, S., Yacef, K., Koprinska, I., & Curran, J. (2017). Automated data-driven hints for computer
programming students. In Adjunct Publication of the 25th Conference on User Modeling,
Adaptation and Personalization, ACM, 5–10.

Computing Research Association (2017). Generation cs: Computer science undergraduate enrollments
surge since 2006.

Corbin, J. M., & Strauss, A. L. (2008). Basics of qualitative research: Techniques and procedures for
developing grounded theory. SAGE Publications, Inc.

COMPUTER SCIENCE EDUCATION 19

https://doi.org/10.1080/08993400500150747
https://doi.org/10.1080/08993400500150747
https://doi.org/10.1109/TE.2010.2098442
https://doi.org/10.1007/s40593-015-0089-1
https://doi.org/10.1080/03075079.2010.510182
https://doi.org/10.3102/00346543061002213
https://doi.org/10.3102/00346543061002213
https://doi.org/10.1007/s11092-008-9068-5
https://doi.org/10.1080/00221546.1993.11778449
https://doi.org/10.3102/00346543065003245
https://doi.org/10.1145/3084362
https://doi.org/10.1145/3084362
https://doi.org/10.1016/S0360-1315(03)00030-7
https://doi.org/10.1016/S0360-1315(03)00030-7
https://doi.org/10.1109/TE.2004.825220

D Baker, R. S., Corbett, A. T., Koedinger, K. R., & Roll, I. (2006). Generalizing detection of gaming the
system across a tutoring curriculum. In International conference on intelligent tutoring systems,
Springer, 402–411.

Daly, C., & Horgan, J. M. (2004). An automated learning system for java programming. IEEE
Transactions on Education, 47(1), 10–17. https://doi.org/10.1109/TE.2003.816064

Drummond, A., Lu, Y., Chaudhuri, S., Jermaine, C., Warren, J., & Rixner, S. (2014). Learning to grade
student programs in a massive open online course. In 2014 IEEE International Conference on Data
Mining, IEEE, 785–790.

Edwards, S. H., & Perez-Quinones, M. A. (2008). Web-cat: Automatically grading programming
assignments. In Proceedings of the 13th Annual Conference on Innovation and Technology in
Computer Science Education, ITiCSE ‘08, ACM, 328.

Evans, C. (2013). Making sense of assessment feedback in higher education. Review of Educational
Research, 83(1), 70–120. https://doi.org/10.3102/0034654312474350

Fyfe, E. R., & Rittle-Johnson, B. (2016). Feedback both helps and hinders learning: The causal role of
prior knowledge. Journal of Educational Psychology, 108(1), 82. https://doi.org/10.1037/
edu0000053

Gao, J., Pang, B., & Lumetta, S. S. (2016). Automated feedback framework for introductory program-
ming courses. In Proceedings of the 2016 ACM Conference on Innovation and Technology in
Computer Science Education, ACM, 53–58.

Gielen, S., Peeters, E., Dochy, F., Onghena, P., & Struyven, K. (2010). Improving the effectiveness of
peer feedback for learning. Learning and Instruction, 20(4), 304–315. https://doi.org/10.1016/j.
learninstruc.2009.08.007

Greer, T., Hao, Q., Jing, M., & Barnes, B. (2019, February). On the effects of active learning environ-
ments in computing education. In Proceedings of the 50th ACM Technical Symposium on Computer
Science Education (pp. 267–272).

Guerreiro, P., & Georgouli, K. (2006, June). Combating anonymousness in populous CS1 and CS2
courses. In Proceedings of the 11th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education,ITICSE ‘06, (pp. 8–12).

Gulwani, S., Radiček, I., & Zuleger, F. (2018). Automated clustering and program repair for introduc-
tory programming assignments. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ACM, 465–480.

Gusukuma, L., Bart, A. C., & Kafura, D. (2020, February). Pedal: An infrastructure for automated
feedback systems. In Proceedings of the 51st ACM Technical Symposium on Computer Science
Education, 1061–1067.

Haldeman, G., Tjang, A., Babe¸s-Vroman, M., Bartos, S., Shah, J., Yucht, D., & Nguyen, T. D. (2018).
Providing meaningful feedback for autograding of programming assignments. In Proceedings of
the 49th ACM Technical Symposium on Computer Science Education, ACM (pp. 278–283).

Hao, Q., Smith IV, D. H., Iriumi, N., Tsikerdekis, M., & Ko, A. J. (2019a). A systematic investigation of
replications in computing education research. ACM Transactions on Computing Education (TOCE),
19(4), 1–18. https://doi.org/10.1145/3345328

Hao, Q., & Tsikerdekis, M. (2019). How automated feedback is delivered matters: Formative feedback
and knowledge transfer. In 2019 IEEE Frontiers in Education Conference (FIE), IEEE, 1–6.

Hao, Q., Wilson, J. P., Ottaway, C., Iriumi, N., Arakawa, K., Smith, I., & David, H. (2019b).
Investigating the essential of meaningful automated formative feedback for programming
assignments. In 2019 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/
HCC’19), IEEE, 1–5.

Hao, Q., Wright, E., Barnes, B., & Branch, R. M. (2016). What are the most important predictors of
computer science students’ online help-seeking behaviors? Computers in Human Behavior, 62,
467–474. https://doi.org/10.1016/j.chb.2016.04.016

Hattie, J., & Gan, M. (2011). Instruction based on feedback. In Mayer, R. E., & Alexander, P. A. (Eds.).
Handbook of research on learning and instruction (pp. 263–285). Taylor & Francis.

Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1),
81–112. https://doi.org/10.3102/003465430298487

20 Q. HAO ET AL.

https://doi.org/10.1109/TE.2003.816064
https://doi.org/10.3102/0034654312474350
https://doi.org/10.1037/edu0000053
https://doi.org/10.1037/edu0000053
https://doi.org/10.1016/j.learninstruc.2009.08.007
https://doi.org/10.1016/j.learninstruc.2009.08.007
https://doi.org/10.1145/3345328
https://doi.org/10.1016/j.chb.2016.04.016
https://doi.org/10.3102/003465430298487

Head, A., Glassman, E., Soares, G., Suzuki, R., Figueredo, L., D’Antoni, L., & Hartmann, B. (2017).
Writing reusable code feedback at scale with mixed-initiative program synthesis. In Proceedings of
the Fourth (2017) ACM Conference on Learning@ Scale, ACM, 89–98.

Higgins, R., Hartley, P., & Skelton, A. (2002). The conscientious consumer: Reconsidering the role of
assessment feedback in student learning. Studies in Higher Education, 27(1), 53–64. https://doi.
org/10.1080/03075070120099368

Hundhausen, C. D., & Brown, J. L. (2007). An experimental study of the impact of visual semantic
feedback on novice programming. Journal of Visual Languages & Computing, 18(6), 537–559.
https://doi.org/10.1016/j.jvlc.2006.09.001

Ihantola, P., Ahoniemi, T., Karavirta, V., & Seppälä, O. (2010). Review of recent systems for automatic
assessment of programming assignments. In Proceedings of the 10th Koli calling international
conference on computing education research, ACM, 86–93.

Ihantola, P., Vihavainen, A., Ahadi, A., Butler, M., Börstler, J., Edwards, S. H., Isohanni, E., Korhonen, A.,
Petersen, A., Rivers, K., . . .& Rubio MÁ. (2015). Educational data mining and learning analytics in
programming: Literature review and case studies. In Proceedings of the 2015 ITiCSE on Working
Group Reports (pp. 41–63).

Juwah, C., Macfarlane-Dick, D., Matthew, B., Nicol, D., Ross, D., & Smith, B. (2004). Enhancing student
learning through effective formative feedback. The Higher Education Academy, 140, 1–40.

Karvelas, I., Li, A., & Becker, B. A. (2020, February). The effects of compilation mechanisms and error
message presentation on novice programmer behavior. In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education (pp. 759–765).

Kendall, J. E., & Kendall, K. E. (1999). Information delivery systems: An exploration of web pull and
push technologies. Communications of the Association for Information Systems, 1(1), 14. https://
doi.org/10.17705/1CAIS.00114

Keuning, H., Jeuring, J., & Heeren, B. (2018). A systematic literature review of automated feedback
generation for programming exercises. ACM Transactions on Computing Education (TOCE), 19(1),
3. https://doi.org/10.1145/3231711

Kinnunen, P., & Simon, B. (2012). My program is ok–am i? Computing freshmen’s experiences of
doing programming assignments. Computer Science Education, 22(1), 1–28. https://doi.org/10.
1080/08993408.2012.655091

Kluger, A. N., & DeNisi, A. (1996). The effects of feedback interventions on performance: A historical
review, a meta-analysis, and a preliminary feedback intervention theory. Psychological Bulletin,
119(2), 254. https://doi.org/10.1037/0033-2909.119.2.254

Lee, H. W., Lim, K. Y., & Grabowski, B. L. (2010). Improving self-regulation, learning strategy use, and
achievement with metacognitive feedback. Educational Technology Research and Development,
58(6), 629–648. https://doi.org/10.1007/s11423-010-9153-6

Luxton-Reilly, A., Albluwi, I., Becker, B. A., Giannakos, M., Kumar, A. N., Ott, L., Paterson, J., Scott, M.
J., Sheard, J., . . .& Szabo, C. (2018, July). Introductory programming: A systematic literature
review. In Proceedings Companion of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education (pp. 55–106).

McMillan, J. H., Venable, J. C., & Varier, D. (2013). Studies of the effect of formative assessment on
student achievement: So much more is needed. Practical Assessment, Research, and Evaluation, 18
(1), 2.

Narciss, S., & Huth, K. (2004). How to design informative tutoring feedback for multimedia learning.
In Niegemann, H. M., Leutner, D., Brünken, R., Leutner, D., & Brünken, R. (Eds.), Instructional design
for multimedia learning (pp 181–195). Waxmann.

Narciss, S., Sosnovsky, S., Schnaubert, L., Andrès, E., Eichelmann, A., Goguadze, G., & Melis, E. (2014).
Exploring feedback and student characteristics relevant for personalizing feedback strategies.
Computers & Education, 71, 56–76. https://doi.org/10.1016/j.compedu.2013.09.011

Neve, P., Hunter, G., Livingston, D., & Orwell, J. (2012). Nooblab: An intelligent learning environment
for teaching programming. In 2012 IEEE/WIC/ACM International Conferences on Web Intelligence
and Intelligent Agent Technology, 3, IEEE, 357–361.

COMPUTER SCIENCE EDUCATION 21

https://doi.org/10.1080/03075070120099368
https://doi.org/10.1080/03075070120099368
https://doi.org/10.1016/j.jvlc.2006.09.001
https://doi.org/10.17705/1CAIS.00114
https://doi.org/10.17705/1CAIS.00114
https://doi.org/10.1145/3231711
https://doi.org/10.1080/08993408.2012.655091
https://doi.org/10.1080/08993408.2012.655091
https://doi.org/10.1037/0033-2909.119.2.254
https://doi.org/10.1007/s11423-010-9153-6
https://doi.org/10.1016/j.compedu.2013.09.011

Nicol, D. J., & Macfarlane-Dick, D. (2006). Formative assessment and self-regulated learning: A model
and seven principles of good feedback practice. Studies in Higher Education, 31(2), 199–218.
https://doi.org/10.1080/03075070600572090

Nygren, H., Leinonen, J., & Hellas, A. (2019, July). Non-restricted access to model solutions: A good
idea? In Proceedings of the 2019 ACM Conference on Innovation and Technology in Computer
Science Education (pp. 44–50).

Pardo, A. (2018). A feedback model for data-rich learning experiences. Assessment & Evaluation in
Higher Education, 43(3), 428–438. https://doi.org/10.1080/02602938.2017.1356905

Parihar, S., Dadachanji, Z., Singh, P. K., Das, R., Karkare, A., & Bhattacharya, A. (2017). Automatic
grading and feedback using program repair for introductory programming courses. In
Proceedings of the 2017 ACM Conference on Innovation and Technology in Computer Science
Education, ACM, 92–97.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin, M., & Paterson, J. (2007).
A survey of literature on the teaching of introductory programming. In ACM sigcse bulletin, 39,
ACM, 204–223.

Pieterse, V. (2013). Automated assessment of programming assignments. In Proceedings of the 3rd
Computer Science Education Research Conference on Computer Science Education Research, CSERC
‘13, Open Univ., Heerlen, The Netherlands, The Netherlands. Open Universiteit, Heerlen, 4:
45–4:56.

Price, T. W., Zhi, R., Dong, Y., Lytle, N., & Barnes, T. (2018). The impact of data quantity and source on
the quality of data-driven hints for programming. In International Conference on Artificial
Intelligence in Education, Springer, 476–490.

Sadler, D. R. (1989). Formative assessment and the design of instructional systems. Instructional
Science, 18(2), 119–144. https://doi.org/10.1007/BF00117714

Saifi, S., Mahmood, T., Gujjar, A., & Ali Sha, S. (2011). Assessing the quality of assessment techniques
at higher education level. International Journal of Business and Social Science, 2(12), 273.

Sax, L. J., Lehman, K. J., & Zavala, C. (2017). Examining the enrollment growth: Non-cs majors in cs1
courses. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education, SIGCSE ‘17, New York, NY, USA, ACM, 513–518.

Serge, S. R., Priest, H. A., Durlach, P. J., & Johnson, C. I. (2013). The effects of static and adaptive
performance feedback in game-based training. Computers in Human Behavior, 29(3), 1150–1158.
https://doi.org/10.1016/j.chb.2012.10.007

Shute, V. J. (2008). Focus on formative feedback. Review of Educational Research, 78(1), 153–189.
https://doi.org/10.3102/0034654307313795

Smith IV, D. H., Hao, Q., Dennen, V., Tsikerdekis, M., Barnes, B., Martin, L., & Tresham, N. (2020).
Towards understanding online question & answer interactions and their effects on student
performance in large-scale stem classes. International Journal of Educational Technology in
Higher Education, 17(1), 1–15. https://doi.org/10.1186/s41239-020-00200-7

Smith IV, D. H., Hao, Q., Jagodzinski, F., Liu, Y., & Gupta, V. (2019, May). Quantifying the effects of prior
knowledge in entry-level programming courses. In Proceedings of the ACM Conference on Global
Computing Education (pp. 30–36).

Stobart, G. (2008). Testing times: The uses and abuses of assessment. Routledge.
Tukiainen, M., & Mönkkönen, E. (2002). Programming aptitude testing as a prediction of learning to

program. In Proceedings of 4th Workshop of the Psychology of Programming Interest Group (pp. 45–
57).

van der Kleij, F. M., Eggen, T. J., Timmers, C. F., & Veldkamp, B. P. (2012). Effects of feedback in a
computer-based assessment for learning. Computers & Education, 58(1), 263–272. https://doi.org/
10.1016/j.compedu.2011.07.020

Van der Kleij, F. M., Feskens, R. C., & Eggen, T. J. (2015). Effects of feedback in a computer- based
learning environment on students’ learning outcomes: A meta-analysis. Review of Educational
Research, 85(4), 475–511. https://doi.org/10.3102/0034654314564881

Van Merrienboer, J. J., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent
developments and future directions. Educational Psychology Review, 17(2), 147–177. https://doi.
org/10.1007/s10648-005-3951-0

22 Q. HAO ET AL.

https://doi.org/10.1080/03075070600572090
https://doi.org/10.1080/02602938.2017.1356905
https://doi.org/10.1007/BF00117714
https://doi.org/10.1016/j.chb.2012.10.007
https://doi.org/10.3102/0034654307313795
https://doi.org/10.1186/s41239-020-00200-7
https://doi.org/10.1016/j.compedu.2011.07.020
https://doi.org/10.1016/j.compedu.2011.07.020
https://doi.org/10.3102/0034654314564881
https://doi.org/10.1007/s10648-005-3951-0
https://doi.org/10.1007/s10648-005-3951-0

Vujošević -Janičić, M., Nikolić, M., Tošić, D., & Kuncak, V. (2013). Software verification and graph
similarity for automated evaluation of students’ assignments. Information and Software
Technology, 55(6), 1004–1016. https://doi.org/10.1016/j.infsof.2012.12.005

Wang, K., Singh, R., & Su, Z. (2018). Search, align, and repair: Data-driven feedback generation for
introductory programming exercises. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2018, New York, NY, USA, ACM,
481–495.

Watson, C., Li, F. W., & Godwin, J. L. (2012). Bluefix: Using crowd-sourced feedback to support
programming students in error diagnosis and repair. In International Conference on Web-Based
Learning, Springer, 228–239.

Yorke, M. (2001). Formative assessment and its relevance to retention. Higher Education Research &
Development, 20(2), 115–126. https://doi.org/10.1080/758483462

Yorke, M. (2003). Formative assessment in higher education: Moves towards theory and the
enhancement of pedagogic practice. Higher Education, 45(4), 477–501. https://doi.org/10.1023/
A:1023967026413

COMPUTER SCIENCE EDUCATION 23

https://doi.org/10.1016/j.infsof.2012.12.005
https://doi.org/10.1080/758483462
https://doi.org/10.1023/A:1023967026413
https://doi.org/10.1023/A:1023967026413

	Abstract
	1. Introduction
	2. Background
	2.1. Design of formative feedback
	2.2. Auto-grading and auto-feedback systems

	3. Research design
	3.1. Research question
	3.2. System design
	3.3. Experiment design
	3.4. Data collection

	4. Results
	4.1. How do different types of automated formative feedback impact student performance on programming assignments?
	4.2. How do different types of automated formative feedback impact student interaction with the automated feedback system?
	4.3. How do students perceive different types of automated formative feedback?
	4.3.1. Question 1: how often did you use the feedback from Travis-CI?
	4.3.2. Question 2: What do you do when you find you have failed a test case on Travis-CI? Describe your experience of utilizing the feedback from Travis-CI
	4.3.3. Question 3: what do you like about the automated feedback from Travis-CI?
	4.3.4. Question 4: What do you dislike about the automated feedback from Travis-CI? How do you want us to improve it?

	5. Discussion
	5.1. Impacts of different types of feedback on student learning
	5.2. Feedback designs for automated testing and feedback systems

	6. Limitations
	7. Conclusion
	Disclosure statement
	Notes on contributors
	ORCID
	References

