
Early identification of struggling students in large
computer science courses: A replication study

Nils Rys-Recker
Western Washington University

Bellingham, Washington

rysrecn@wwu.edu

Qiang Hao
Western Washington University

Bellingham, Washington

qiang.hao@wwu.edu

Abstract—The identification of struggling students in a scalable
manner in large computer science courses continues to attract
researchers’ attention because of the high failure and dropout
rates in such courses. In the last two decades, studies on this topic
made significant progress in taking advantage of dynamic data
sources and employing machine learning techniques to identify
struggling students. However, the success of these studies was still
limited due to reasons such as oversimplification and utilizing
exclusive tools. These limitations make it difficult to replicate
the findings of prior research on this topic. To address these
issues and explore the extent to which we can replicate studies
on this topic, this study replicated a recent study that explored
identifying struggling students at the topic level using context-
agnostic features. Our results demonstrate the potential of
context-agnostic features in identifying struggling students with
varied success rates. Our findings shed light on the robustness
and feasibility of using machine learning techniques to identify
struggling students in large computer science courses. Finally,
our discussion provides useful guidance on future studies and
replications on this topic.

I. INTRODUCTION

Computing science as a discipline continues to attract an

increasing number of students in the last two decades. As

the expansion continues, the high failure and dropout rate

in computer science remains a challenge to be addressed by

researchers and educators. As a result, computing education

research witnessed increasing interest in how to help students

in a scalable manner, starting with early identification of

struggling students. By identifying struggling students early,

instructors can provide guided help in a timely manner, and

use the limited resources strategically to help those who need

it the most, thus reducing the overall failure and dropout rates.

The approaches to identifying struggling students have

evolved over the years. Early studies on this topic tend to

focus more on static factors aiming at predicting student

performance through quizzes and surveys conducted prior to

learning [1]–[3]. These studies have yielded mixed results.

Recent studies have shifted towards using dynamic factors to

predict student performance [4]–[15]. Dynamic factors refer

to those factors that can be observed and constantly measured

as students engage with learning activities. The usage of

dynamic factors contributes to a more in-depth understanding

of students’ day-to-day learning and potential struggles.

The collection of dynamic data heavily relies on different

technologies because of the high data collection frequency

and scale. The technologies range from clickers in classrooms

to software that tracks student coding behaviors. Some ap-

proaches to dynamic data collection pose bigger barriers than

others for researchers to replicate. The barriers can take the

form of large initial costs, or software that is not public for

others to access. Some studies took advantage of hardware

such as clickers that might not be available elsewhere [4]–

[6], while others use specialized software in the form of IDE

integration [10], [16] or course management systems [7]–[9].

The use of version control systems has also been brought

to the forefront by recent studies on this topic [15], [17], [18].

With the great importance of version control in industry and

its extensive use in classrooms, version control systems have

the potential to record a student’s work at a fine-grained level

by storing many snapshots of student code repositories. When

combined with a continuous integration tool that supports

automated testing on each of the stored snapshots, it has the

potential to accurately measure student progress constantly

and accurately. A notable study that utilized version control

systems in tandem with continuous integration on this topic is

the study of Arakawa et al. [19]. This study used the collected

data to build and compare four different machine learning

models for identifying struggling students at the topic level

using only context-agnostic features.

To gain further insights into the feasibility of identifying

struggling students at the topic level using context-agnostic

features, we replicated the study conducted by Arakawa et al.

We were guided by the following research questions:

1) To what extent can the results reported by Arakawa et

al. be replicated?

2) To what extent can we identify student struggles in

programming courses at the topic level using context-

agnostic features?

Our first research question aims to explore and evaluate the

robustness and generalizability of the reported approach of

Arakawa et al. in identifying struggling students. Our second

research question is the same as that of Arakawa et al. To

answer this question, we adopted the same research design,

utilized a system that combined the power of version control

and continuous integration, and collected data from an entry-

level programming course. Similarly, we trained and evaluated

machine learning models that identify struggling students at

88

2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC)

2836-3795/24/$31.00 ©2024 IEEE
DOI 10.1109/COMPSAC61105.2024.00022

the topic level using only context-agnostic features.

II. BACKGROUND

A. Earlier Studies using static factors

Early studies in identifying struggling students focused

more on static factors. Static factors refer to attributes that

are unlikely to change during the period of studies, such as

biographical information, socioeconomic status, or aptitude

levels. More precisely, two approaches were used to study

using static factors to identify struggling students.

A common approach was to use demographic information,

socioeconomic status, or prior academic performance to pre-

dict student performance. An example of this approach is the

study conducted by Newsted [1]. In this study, 472 students

across three semesters in an introductory FORTRAN pro-

gramming course were given 18-question questionnaires. Only

28% (131) valid questionnaires were returned. The generated

regression models were able to explain 41% of the variance in

a student’s grade. Due to the limits of data collection and study

design, the variance that can be explained by static factors was

relatively low. The other approach was to use aptitude tests to

measure student proficiency levels and use such data to iden-

tify struggling students. An example was the study of Kurtz

[2]. In this study, an aptitude test measuring ten areas of formal

reasoning such as correlational reasoning was distributed. Via

using aptitude tests, Kurtz was able to explain 66% of the

variance regarding letter grades. Barker and Unger [3] built

upon the study of Kurtz and utilized an abridged version of the

aptitude test. They examined 353 students across 10 instructors

in 15 class sections with two different programming languages.

Their findings were significantly different from Kurtz’s. Barker

and Unger achieved a correlation of 0.12 between ID-level and

final grade in comparison to 0.80 from Kurtz’s study.

While static factors showed some potential in predicting

struggling students, they lack reliability and have relatively

poor generalizability. As data on static factors is often col-

lected only at the beginning of the learning, it often ignores

students’ day-to-day changes, progress, and struggles.

B. Recent Studies using dynamic factors

More recent studies have shifted from using static factors to

using dynamic factors to identify struggling students. Dynamic

factors refer to the factors that are dynamically changing

constantly during the study time and thus must be collected

as frequently as possible. Four common approaches were

explored in using dynamic data to identify struggling students.

The first approach explored the usage of clickers in mea-

suring student learning on a daily basis. Clickers are small

handheld devices that Kenwright defines as allowing students

to ”answer questions in the form of quizzes or self-assessment,

perform instructor or course evaluations, and/or record atten-

dance” [20]. Porter et al. [4] utilized clicker quizzes in order to

gather data for assessing student understanding and predicting

student end-of-term outcomes. In this study, three different

types of clicker questions were administered: Individual Votes,

Group Votes, and Classwide Discussions. The findings of

Porter et al. [4] showed that clicker performance correlated

highly with final exam performance with a correlation of 0.64.

Building upon this study Liao et al. [5] incorporated machine

learning models based on clicker questions for predicting

struggling students during separate terms. They found success

in using a linear regression model which was able to accurately

predict 70% of students as either struggling or not struggling

with just the first three weeks as training data.

The second approach explored using the data on student

interactions with course management systems to identify strug-

gles. Zefra et al. [7] utilized this method in their study and

collected data on student interaction activities, such as time

spent on assignments. They achieved a 0.743 accuracy for

predicting student final performance using a multi-instance

grammar-guided genetic programming model. Fire et al. [8]

tracked student social networks through individual and group

assignments. By combining social network graph features with

student grades the study produced a Linear Regression model

with a variation of 17.4% and a Rotation Forest classifier with

an AUC of 0.672 in determining which students were most

likely to fail.

The third approach explored tracking student behavioral

data via IDE plugins and specialized IDES, and used such

data to identify struggling students. The data that was collected

typically involved keystrokes and IDE compilation events. An

example of this approach is the study conducted by Jadud

[10] in which they used compilation behavior to measure error

quotients, which denoted how much a student struggles with

syntax errors. These error quotients, however, were found to

have a low-quality correlation with student average grades,

and student final exam scores. Petersen et al. [11], also found

that the predictive power varied greatly across contexts using

error quotients, with in some cases being unable to effectively

predict performance at all. To address this issue, Becker

[16] built upon error quotients with a new metric, repeated

error density, which measured repeated errors. By applying

both metrics to a dataset containing 29,019 error events,

Becker argued that repeated errors were a strong indicator

of struggling students and that repeated error density was

promising as a less context-dependent metric.

The fourth approach explored the use of version con-

trol systems in combination with other dynamic data and

used combined data to identify struggling students. Guerrero-

Higueras et al. [17] explored tracking student interactions with

a different version control system Git, such as the number

of commits. They used the collected data to develop and

evaluate different machine learning models, and found proof

that “commits, additions, days, and commits/day are the most

discriminant” factors in predicting student performance [17].

Sprint and Conci [18] studied using GitHub Classroom to

collect data on student commit behaviors, and the extent to

which the behaviors can predict student performance. They

found a weak correlation between commit behavior and grades

at a group level, but a strong correlation at the individual level.

Arakawa et al. also utilized Git in tandem with the continuous

integration tool Travis-CI. They focused on collecting only

89

context-agnostic features to identify struggling students at

the topic level. By doing so, they attempted to address two

main concerns: (a) Student learning process is dynamic and

full of changes, in that students may struggle on multiple

learning topics. and (b) A reduced reliance on classroom-

specific features helps increase the replication possibilities.

Arakawa et al. were able to collect in-depth information, while

not being intrusive in the students’ programming experience.

They tested and compared multiple machine learning models,

and achieved an AUC value of over 80% using only the first

two weeks’ data of a semester.

C. Why Replication?

This study aims to replicate the study conducted by

Arakawa et al. Replication studies play an important role

in ensuring the reliability and generalizability of published

studies [21]. Although most scientists understand the im-

portance of replications, replication studies constitute a very

minor portion of computing education research. Hao et al.

[21] found that only 2.12% of publications from 2009 to 2018

were replication studies in the field of computing education.

Particularly, replications on the topic of identifying struggling

students are extremely rare. The difficulties in data collection,

heavy reliance on context-dependent features, and lack of

access to systems used in prior research all contribute to the

lack of replications on this topic.

As a replication study, our study can shed light on the extent

to which prior findings on this topic can be replicated. We

chose to replicate the study of Arakawa et al. for the easiness

of replicating their process of data collection and analysis,

and the implication for practitioners. Many studies on this

topic relied on instruments that were only accessible to the

researchers, such as course management systems that were

still being tested, or tools with limited accessibility, such as

clickers. In contrast, the study of Arakawa et al. only relied on

two pieces of tools that are available to any researchers and

practitioners, Git as the version control system and Travis-

CI as the continuous integration tool. If the identification of

struggling students can be context-agnostic and efficient, it

will have direct implications for research on this topic.

III. RESEARCH DESIGN

Our research design followed the same design philoso-

phy as Arakawa et al. We collected data from students at

the topic level to avoid oversimplifying the definition of

struggling students. To achieve this, we collected data for

each programming assignment in an entry-level programming

course with 41 students at a large undergraduate institution

in the northwestern United States. There were three different

programming assignments, and each assignment covered a

different topic, ranging from sorting, searching, to graph.

Same as the original study, we adopted version control and

continuous integration tools to track student learning behaviors

and performance. Same as in the original study, we used Git

and GitHub as the version control system. Different from the

original study, we used GitHub Actions instead of Travis-CI

as the continuous integration tool, considering that GitHub

has a wider adoption by practitioners in computing education,

runs faster, and is free to use by educators. Both GitHub

Actions and Travis-CI serve the same purpose and don’t affect

the research design. When a student commits and pushes his

or her code to GitHub, GitHub Actions will be triggered to

automatically test the student’s code against a set of prepared

test cases. When testing is completed, GitHub Actions will

notify students of the testing results, which contain detailed

feedback corresponding to each test case. Both GitHub and

GitHub Actions provided standardized RESTful APIs that

allow the authorized parties to collect data on each commit

and push, as well as the results of each triggered test. Through

the APIs of GitHub and GitHub Actions, we were able to track

fine-grained student coding behaviors and the testing results

of every commit and push in their coding repositories.

In this study, we collected 1,134 commits across 120 student

submissions for three assignments. Each student submission

is represented by a distinct student GitHub repository, from

which each commit and push triggered the automated testing

powered by GitHub Action. Same as the original study, we

collected data on the following context-agnostic features:

• Normalized timestamp: The timestamp of when a push

was done, in which a 0 denotes the assignment start date,

and a 1 denotes the assignment due date

• Additions: The number of lines of code added to the

previous push

• Deletions: the number of lines of code removed from the

previous push

• Test ratio: The ratio between the amount of test cases

passed to the number of total test cases.

• Error ratio: The ratio between the number of previous

pushes that failed to compile versus the number of

previous pushes

• First commit timestamp: The normalized timestamp of the

first commit.

TABLE I
THE CUMULATIVE PERFORMANCE RESULTS SHOWN AS AUROC SCORES OF OUR MODELS WITH DIFFERENT TRAINING AND TESTING DATA

Rounds Training Data Set Testing Data Set RNN LSTM Wide RNN Wide LSTM
Replication Target Replication Target 0.792 ± 0.035 0.771 ± 0.038 0.776 ± 0.030 0.784 ± 0.023

Round 1 Replication Target New Data 0.673 ± 0.118 0.677 ± 0.151 0.684 ± 0.101 0.680 ± 0.116
Round 2 Replication Target & New Data New Data 0.668 ± 0.095 0.754 ± 0.075 0.730 ± 0.101 0.767 ± 0.089
Round 3 New Data New Data 0.662 ± 0.054 0.687 ± 0.090 0.636 ± 0.109 0.672 ± 0.100

Note: Replication target refers to the data from the study of Arakawa et al. New Data refers to the data set
collected in this study.

90

• Number of pushes with no progress: The number of

pushes from the student in which the test ratio has not

increased

• Highest test ratio: the maximum test ratio achieved thus

far by the student

We defined struggling students the same as in the study of

Arakawa et al. - By the time an assignment is due, if a student

fails at least one test case, the student is considered struggling.

The conventional approach in defining struggling students

is typically classifying students into two groups, struggling

and not struggling, based on their overall performance or

performance in the final exam. The conventional approach

fails to account for the nuances during the student’s learning

process. Most importantly, if the ultimate goal is to provide

just-in-time help to those who struggle, it is pressing to

know which student is struggling on what topic in time. The

definition of struggling students from Arakawa et al., therefore,

enables us to provide in-time feedback.

We conducted the same data analysis of Arakawa et al.,

applying four machine learning models to explore if the

context-agnostic features can identify struggling students. The

four models include recurrent neural network (RNN), long

short-term memory network (LSTM), Wide RNN, and Wide

LSTM. To answer the two research questions, we conducted

three rounds of analysis using each machine learning model:

• Round 1: We used the dataset from Arakawa et al. to train

machine learning models, and test the models against the

new data.

• Round 2: We used the dataset from Arakawa et al. in

combination with the new data to train machine learning

models, and test the models against the new data.

• Round 3: We used the new data to train machine learning

models, and test the models against the new data.

To make our results comparable to the original study, we

used an area under the receiver operating characteristic (AU-

ROC) for the evaluation metric and utilized 5-fold stratified

cross-validation to mitigate heterogeneity in the dataset.

IV. RESULTS

Same as the original study, we evaluated each model’s

cumulative performance through making predictions on every

commit sequence in the training dataset. The predictions were

used to calculate the ROC, in order to understand how well

the model performs in terms of making both early and late

TABLE II
THE EARLIEST A MODEL CAN MAKE A PREDICTION INTO AN ASSIGNMENT

IN ACHIEVING A DECENT AUC

Model Type Mean AUC ≥ 0.7 AUC lower bound ≥ 0.7
RNN 75.59% 97.64%

LSTM 91.34% –
Wide RNN 93.70% –

Wide LSTM 66.14% 97.64%

Note: The percentage numbers represent the percentage of
time into an assignment. For example, if an assignment
lasts for 14 days, 66.14% of that duration is about 9 days.

predictions. The results of our four models are summarized

in Table 1. We can see that on average the best-performing

training data variation was from Round 2, followed by Round
1, then Round 3; The best-performing training data set was the

combination of the newly collected data and the data from the

original study. The highest AUROC for identifying struggling

students in the new data set was Wide LSTM with an AUROC

of 0.768. The variations for identifying struggling students in

the new data are found to be larger than in the original study,

with an average variation of 0.099 in comparison to 0.032 in

the replication models.

To compare how early the mean AUC can be achieved in

comparison to the original study, we summarized the time into

the assignment in order to achieve a mean AUC of at least 0.7

in Table 2. Considering that the duration of assignments were

different in the original study from this one, we computed

the percentage of time instead of days. Different from the

original study, none of our models achieved a mean AUC

greater than 0.8. However, all of our replication models were

able to achieve a mean AUC greater than or equal to 0.7.

The model that achieved a mean AUC of 0.7 the earliest was

the wide LSTM, using 66.14% of the assignment time. For

example, if an assignment lasts for 14 days, the wide LSTM

can achieve a mean AUC of 0.7 in 9.26 days.

The comparisons between our results and the original study

are presented in Tables 3 and 4. Table 3 compares the

cumulative performance of each model type, with the perfor-

mance measured by the AUROC score. The replication models

performed worse on average by 0.134. Table 4 compares

the real-time efficiency of each model type. The replication

models were all slower, requiring on average 43% longer into

the assignment to achieve the same milestone of a 0.7 AUC

mean.

TABLE III
THE CUMULATIVE PERFORMANCE COMPARISON

Model Type Replication Results Arakawa et al.’s Results
RNN 0.673 ± 0.118 0.821 ± 0.011
LSTM 0.754 ± 0.075 0.910 ± 0.0021
Wide RNN 0.730 ± 0.101 0.910 ± 0.0034
Wide LSTM 0.767 ± 0.089 0.922 ± 0.0019

Note: The comparisons are measured by AUROC scores

V. DISCUSSION

A. To what extent can the results reported by Arakawa et al.
be replicated?

We confirmed the streamlined process of data collection

in the study of Arakawa et al. Arakawa et al. emphasized

the importance of minimizing the complexity and overhead

of data collection for future replications. Version control and

continuous integration systems are generally available to prac-

titioners of computing education, and their implementations

(e.g., GitHub) typically provide a set of well-documented

APIs for educators and researchers to collect data on their

students, which makes it not only possible but also easy to

conduct a replication study. More importantly, using such

91

TABLE IV
THE COMPARISON ON HOW EARLY A MODEL CAN IDENTIFY STRUGGLING STUDENTS

Replication Results Arakawa et al.’s Results

Model Type Mean AUC ≥ 0.7 AUC lower bound ≥ 0.7 Mean AUC ≥ 0.7 AUC lower bound ≥ 0.7

RNN 75.59% 97.64% 55.14% 100%

LSTM 91.34% - 28.35% 44.85%

Wide RNN 93.70% - 27.57% 30.71%

Wide LSTM 66.14% 97.64% 17.35% 17.35%

Note: The comparisons are measured by the percentage of time into an assignment

non-obtrusive approaches to collect data from students has

an advantage over other reported approaches - students are

less likely to be unrepresented in the collected data. Unlike

surveys in which not every student would answer [1], or clicker

quizzes which are unable to collect data on students who

miss a day [22], version control systems are baked into the

assignment submission process. Continuous integration also

provides a large benefit by motivating a consistent stream of

student submissions through in-time feedback and therefore

allowing for more consistent data collection. We found that

the overhead in data collection is greatly minimized because

data is automatically generated and can be automatically

collected, therefore not requiring us to perform extra tasks.

The approach of data collection reported by Arakawa et al. has

the potential to enable more replication studies on this topic.

More importantly, it sheds light on how the research on this

topic may have a real-world impact by minimizing the barrier

of entry to data collection and analytics for practitioners in

computing education.

We reached similar findings as Arakawa et al. However,

we did not achieve training models as powerful as the orig-

inal study in comparison. The replication models trained in

this study only achieved reasonably good results in terms

of identifying struggling students at the topic level using

context-agnostic features. The cumulative performance of our

replication models underperformed those reported by Arakawa

et al. Measured by AUROC, our models underperformed on

average by 0.134. In addition to that, it also takes longer

for our models to identify struggling students on a topic. On

average, it requires 45% longer than time into an assignment

for our replication models to achieve the same milestone (0.7

AUC) than the counterparts reported in the original study.

The differences between this and the original study are

likely due to the differences in sample sizes. When we trained

the models only using the new data or the data from the

original study, the models did not perform as well as the ones

trained using a combination of new data and the data from

the original study. LSTM, Wide RNN, and Wide LSTM all

achieved reasonably high AUROC values. Additionally, it is

worth noting that although our replication models underper-

formed their counterparts in the original study, our models had

the same rankings. For example, RNN underperformed models

trained using LSTM, Wide RNN, and Wide LSTM in both

the original study and this study. For another example, Wide

LSTM is the best-performing model in both the original study

and this study. Given all these similarities in our findings, the

reduced effects in our study are likely due to the comparatively

limited testing data size. That said, although this study verifies

that struggling students can be identified in a relatively small

or medium-sized computer science course, it may come with

a varied degree of success.

B. To what extent can we identify student struggles in pro-
gramming courses at the topic level using context-agnostic
features?

Our replications verify that it is possible to identify strug-

gling students at the topic level. Most studies on this topic

chose to identify struggling students on their overall per-

formance or performance on the final exam. The study of

Arakawa et al. hypothesized that struggling students could

be identified along their learning progress on each individual

topic, and explored its potential. Our replications further verify

the potential to identify struggling students at the topic level.

By doing so, we are able to catch two types of struggles that

prior studies would miss when the overall performance is used

as the target to evaluate struggling students. The first type is

when a student passes the course while actually having strug-

gled a lot during the learning; The second type is a student that

a model determines will pass, while in reality they struggle on

all topics and will fail the course. Although the first type still

has the student finding success overall, they still may face very

real struggles with specific topics that will go unidentified. By

focusing on the topic level these students have the chance of

being detected and therefore provided with the assistance they

need. The second case is much more severe in scale. When

focusing on the overall performance a misclassification means

the student will be completely missed, essentially abandoned.

By decreasing the scope to the topic level, missing a student

once still allows struggles to be identified on different topics,

therefore minimizing the potential damage of making a single

misclassification.

Our replications also verify that it is possible to identify

struggling students using context-agnostic features. The study

of Arakawa et al. proposed and explored the potential of

identifying struggling students using context-agnostic features.

Our replications achieved better or similar results using small-

sized testing data in comparison to the results from other

studies on the same topic. For example, our best-performing

92

model, Wide LSTM, achieved an AUROC score better than the

model trained on clicker data reported by Liao et al. [6], which

achieved an AUROC value of 0.76. For another example,

our Wide LSTM model performed better than the model

trained on student social networks produced by Fire et al. [8],

which achieved an AUROC value of 0.672. Some prior studies

used accuracy, instead of AUROC, to measure their model

performance. Although accuracy is not the best measurement

for extremely unbalanced classification tasks, such as struggle

identification, our models still performed on par with the

reported results using such a measurement. Zefra et al.’s [7]

multi-instance grammar-guided genetic programming models

achieved an accuracy of 0.743, and the models produced by

Ahadi et al. [12] also achieved similar results, with their

models predicting performance across semesters achieving an

accuracy from 71% to 80%. Only the model reported by

Castro-Wunsch et al. [13] outperformed our replication models

by achieving an accuracy of 85.29%. Based on the comparison

between our results and other studies, we believe that context-

agnostic features are capable of training machine learning

models for identifying struggling students at the topic level in

programming courses. Considering that data collection on such

features can be easily automated, future studies are encouraged

to explore this direction further.

VI. LIMITATIONS

Our greatest limitation is the size of the testing dataset. In

order to gain an understanding of how well a model is able

to generalize on a bigger scale, collecting data on varying

topics from different computer science courses at different

institutions would lead to more robust results. Future studies

or future replications on this topic may consider increasing the

data size of testing data when possible.

VII. CONCLUSION

In this study, we replicated the study conducted by Arakawa

et al. to answer two research questions, including ”To what ex-
tent can the results reported by Arakawa et al. be replicated?”

and ”To what extent can we identify student struggles in
programming courses at the topic level using context-agnostic
features?” We replicated the results reported by Arakawa et al.

with a varied degree of success. Our results demonstrated the

potential of context-agnostic features in identifying struggling

students. Our findings shed light on the robustness and feasibil-

ity of using machine learning techniques to identify struggling

students in large computer science courses. Our discussion

provided useful guidance on future studies and replications on

this topic.

REFERENCES

[1] P. R. Newsted, “Grade and ability predictions in an introductory pro-
gramming course,” ACM SIGCSE Bulletin, vol. 7, no. 2, pp. 87–91,
1975.

[2] B. L. Kurtz, “Investigating the relationship between the development
of abstract reasoning and performance in an introductory programming
class,” in Proceedings of the eleventh SIGCSE technical symposium on
Computer science education, 1980, pp. 110–117.

[3] R. J. Barker and E. A. Unger, “A predictor for success in an introductory
programming class based upon abstract reasoning development,” ACM
SIGCSE Bulletin, vol. 15, no. 1, pp. 154–158, 1983.

[4] L. Porter, D. Bouvier, Q. Cutts, S. Grissom, C. Lee, R. McCartney,
D. Zingaro, and B. Simon, “A multi-institutional study of peer in-
struction in introductory computing,” in Proceedings of the 47th ACM
Technical Symposium on Computing Science Education, 2016, pp. 358–
363.

[5] S. N. Liao, D. Zingaro, M. A. Laurenzano, W. G. Griswold, and
L. Porter, “Lightweight, early identification of at-risk cs1 students,” in
Proceedings of the 2016 acm conference on international computing
education research, 2016, pp. 123–131.

[6] S. N. Liao, D. Zingaro, C. Alvarado, W. G. Griswold, and L. Porter,
“Exploring the value of different data sources for predicting student
performance in multiple cs courses,” in Proceedings of the 50th ACM
technical symposium on computer science education, 2019, pp. 112–118.

[7] A. Zafra and S. Ventura, “Multi-instance genetic programming for
predicting student performance in web based educational environments,”
Applied Soft Computing, vol. 12, no. 8, pp. 2693–2706, 2012.

[8] M. Fire, G. Katz, Y. Elovici, B. Shapira, and L. Rokach, “Predicting
student exam’s scores by analyzing social network data,” in Active Media
Technology: 8th International Conference, AMT 2012, Macau, China,
December 4-7, 2012. Proceedings 8. Springer, 2012, pp. 584–595.

[9] L. Leppänen, J. Leinonen, P. Ihantola, and A. Hellas, “Predicting
academic success based on learning material usage,” in Proceedings
of the 18th Annual Conference on Information Technology Education,
2017, pp. 13–18.

[10] M. C. Jadud, “Methods and tools for exploring novice compilation
behaviour,” in Proceedings of the second international workshop on
Computing education research, 2006, pp. 73–84.

[11] A. Petersen, J. Spacco, and A. Vihavainen, “An exploration of error
quotient in multiple contexts,” in Proceedings of the 15th Koli Calling
Conference on Computing Education Research, 2015, pp. 77–86.

[12] A. Ahadi, R. Lister, H. Haapala, and A. Vihavainen, “Exploring machine
learning methods to automatically identify students in need of assis-
tance,” in Proceedings of the eleventh annual international conference
on international computing education research, 2015, pp. 121–130.

[13] K. Castro-Wunsch, A. Ahadi, and A. Petersen, “Evaluating neural
networks as a method for identifying students in need of assistance,”
in Proceedings of the 2017 ACM SIGCSE technical symposium on
computer science education, 2017, pp. 111–116.

[14] Z. Pullar-Strecker, F. D. Pereira, P. Denny, A. Luxton-Reilly, and
J. Leinonen, “G is for generalisation: Predicting student success from
keystrokes,” in Proceedings of the 54th ACM Technical Symposium on
Computer Science Education V. 1, 2023, pp. 1028–1034.

[15] K. Mierle, K. Laven, S. Roweis, and G. Wilson, “Mining student
cvs repositories for performance indicators,” ACM SIGSOFT Software
Engineering Notes, vol. 30, no. 4, pp. 1–5, 2005.

[16] B. A. Becker, “A new metric to quantify repeated compiler errors for
novice programmers,” in Proceedings of the 2016 ACM Conference on
Innovation and Technology in Computer Science Education, 2016, pp.
296–301.

[17] Á. M. Guerrero-Higueras, N. DeCastro-Garcı́a, V. Matellán, and M. Á.
Conde, “Predictive models of academic success: a case study with
version control systems,” in Proceedings of the Sixth International Con-
ference on Technological Ecosystems for Enhancing Multiculturality,
2018, pp. 306–312.

[18] G. Sprint and J. Conci, “Mining github classroom commit behavior
in elective and introductory computer science courses,” The Journal of
Computing Sciences in Colleges, vol. 35, no. 1, 2019.

[19] K. Arakawa, Q. Hao, W. Deneke, I. Cowan, S. Wolfman, and A. Pe-
terson, “Early identification of student struggles at the topic level using
context-agnostic features,” in Proceedings of the 53rd ACM Technical
Symposium on Computer Science Education-Volume 1, 2022, pp. 147–
153.

[20] K. Kenwright, “Clickers in the classroom,” TechTrends, vol. 53, no. 1,
pp. 74–77, 2009.

[21] Q. Hao, D. H. Smith IV, N. Iriumi, M. Tsikerdekis, and A. J. Ko,
“A systematic investigation of replications in computing education
research,” ACM Transactions on Computing Education (TOCE), vol. 19,
no. 4, pp. 1–18, 2019.

[22] L. Porter, D. Zingaro, and R. Lister, “Predicting student success using
fine grain clicker data,” in Proceedings of the tenth annual conference
on International computing education research, 2014, pp. 51–58.

93

