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Abstract—This study investigated the essential of meaning-
ful automated feedback for programming assignments. Three
different types of feedback were tested, including (a) What’s
wrong - what test cases were testing and which failed, (b) Gap -
comparisons between expected and actual outputs, and (c) Hint -
hints on how to fix problems if test cases failed. 46 students taking
a CS2 participated in this study. They were divided into three
groups, and the feedback configurations for each group were
different: (1) Group One - What’s wrong, (2) Group Two - What’s
wrong + Gap, (3) Group Three - What’s wrong + Gap + Hint. This
study found that simply knowing what failed did not help students
sufficiently, and might stimulate system gaming behavior. Hints
were not found to be impactful on student performance or their
usage of automated feedback. Based on the findings, this study
provides practical guidance on the design of automated feedback.

Index Terms—automated feedback, automated grading, forma-
tive feedback, programming assignments, computing education,
controlled experiments

I. INTRODUCTION

Student interest in computer science (CS) has increased

substantially over the last decade. In the U.S., undergraduate

CS enrollment has doubled since 2011, and class sizes of

programming courses offered in colleges have more than

tripled [1]. CS courses nowadays are characterized by large

enrollments and low instructor-to-student ratios, especially for

the entry-level CS courses, such as CS1, CS2 or data structures

[1], [2]. The challenges in assessing programming assignments

of a large number of students make it difficult for students to

get feedback in time. When students work on either individual

or group programming assignments, they may meet challenges

they can not overcome. If feedback can be provided at those

moments when it is needed the most, the learning efficacy can

be significantly enhanced.

Prior studies addressing the feedback challenge originated

from automated grading of programming assignments. As

class sizes grew rapidly, it was natural to ensure that program-

ming assignments were assessed in a timely manner [3], [4].

The investigation on auto-grading made significant contribu-

tions to computing education research, but also cast a perspec-

tive of summative feedback on the efforts to automate feedback

— feedback should be provided along the assessment results

[5], [6]. A popular concern was that formative feedback, the

feedback provided during the learning process, may lead to

students gaming the system [7]–[9]. Many tested programming

assignment systems provide no formative feedback to students

or limit the allowed number of submissions [9]–[11]. As a

result, there is a gap in our understanding on how students

utilize automated formative feedback and whether that leads

to better learning efficacy.

To fill this gap, this study investigated the essential com-

ponents of effective automated formative feedback through

a controlled experiment. The results of this study provide

empirical evidence on the efficacy of automated formative

feedback of different configurations, and contribute to the

understanding of how CS students utilize it for just-in-time

learning.

II. RELATED WORKS

A. Automated Grading and Feedback

Programming assignments are difficult to assess and provide

feedback in a timely manner for many reasons, including

multiple possible approaches to problem solving, necessity to

test against many cases to reach sufficient test coverage, and

different individual coding habits and styles [3], [12], [13].

As student enrollment grows, the first challenge to address

was the assessment. As a result, automated grading has been

investigated extensively.

Studies before 2010 on this topic tended to focus on

automated grading system development and testing [9], [13],

[14]. Systems developed in this period of time require instruc-

tors to provide representative test cases and manually tune

feedback to work effectively. Web-CAT and Autolab are two

representative examples [15], [16]. More importantly, early

systems and studies had great concerns over the possibility

that students may game the system, so such systems typically

expected the submission of a fully completed program before

providing feedback, limit the number of submissions, and limit

the completeness of the feedback [8], [9], [13].

A focus shift from automated grading to automated feed-

back was witnessed in the most recent decade. Specifically,

the focus was on feedback generation through data-driven

approaches [17], [18]. Massive Open Online Programming

Courses provided large datasets of programming assignments,

which is critical to make such approaches possible. The efforts978-1-7281-0810-0/19/$31.00 ©2019 IEEE
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typically aim at providing student suggestions on repairing

their program through measuring the distance between their

program and the most similar working program [19]–[21].

Such efforts are still in their early stage for two reasons. First,

these approaches were rarely tested in authentic environments.

Second, how these approaches can be effectively applied to a

significantly smaller dataset (i.e., a face-to-face CS1 in a large

university) is still unknown.

B. Effective Feedback from Educational Perspectives

In general, feedback can be categorized into two types: for-

mative and summative. Summative feedback is provided when

assessment results are released, whereas formative feedback is

provided during the learning process. Formative feedback has

been found constantly more effective than summative feedback

in helping students learn in educational studies across different

disciplines, because summative feedback serves more as a

justification of the assessment results in student eyes [5],

[6], [8]. However, this important perspective was not well

taken by studies on automated feedback. Early studies found

that students tended to abuse multi-leveled hints where the

bottom-level hint revealed direct answers [22]–[24]. Although

hints can only be considered as one type of feedback, many

studies used the two terms interchangeably [8], [13], [22], [25].

This may contribute to the lack of investigations on how CS

students actually use automated feedback.

Fig. 1. A partial screenshot of what a student sees on Travis-CI

III. RESEARCH DESIGN

A. Research Questions

Two research questions to guide the research design, includ-

ing:

1) What feedback component is more essential than others

to student learning?

2) How do automated feedback configurations affect student

usage behavior?

B. System Implementation and Feedback Design

The automated feedback service we implemented for this

study was through the existing infrastructures, including

GitHub, GitHub Classroom, Travis-CI and Gradle. Travis-CI

is a distributed continuous integration service for building and

testing software projects hosted at GitHub [26]. Gradle is an

open-source build automation system for Java programming

[27]. Our settings allow students to commit & push to GitHub

as many times as they want before due dates. Every commit

& push will trigger the execution of the submitted code and

prepared testing code, and the generated formative feedback

will be presented on Travis-CI (https://travis-ci.com; see Fig-

ure 1). Students can always get formative feedback regardless

of if they have fully finished the program or not. In addition,

no explicit submission actions are required beyond regular

commits & pushes.

The key of this study is the design of feedback. Synthesizing

the literature on feedback, we classified common feedback into

three types in the context of computing education:

1) What’s wrong: Per test case, what it is testing and whether

it is a pass or failure [28]

2) Gap: Per test case, what the expected output is, and what

the actual output is [29]

3) Hint: Per test case, how you may fix the issue if the test

case fails [22], [25]

All types of feedback were implemented per test case. To

effectively implement Hint, we adopted the approach used by

Parihar et al. [20]. We collected student submissions of the

same programming assignments over the last three quarters,

summarized the common mistakes and problems, and designed

adaptive hints for the top five common mistakes per test case.

C. Experiment Design

This study was conducted in a large university in the

North American Pacific Northwest. 46 students taking a CS2

participated in this study. The course was composed of both

lectures and lab sessions. Students were expected to complete

Fig. 2. An example of different feedback configurations for a method
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three complex individual programming assignments during the

lab sessions. Each assignment required about 200-300 lines of

code to completely solve the given problem. Students were

randomly and evenly divided into three different lab sessions.

Each student only attended one lab session throughout the

whole semester. Therefore, each lab session was treated as

a group. The automated feedback each group received on

their programming assignments were configured different (see

Figure 2):

1) Group One: What’s wrong
2) Group Two: What’s wrong + Gap
3) Group Three: What’s wrong + Gap + Hint
All students learned how to use Git before taking the ex-

perimental course, and they were given detailed instruction on

how to utilize automated formative feedback in the beginning

of the course. All student coding behaviors captured by Git

and Travis were tracked. Students were asked to indicate the

frequency of checking feedback on Travis-CI by the end of

the course. Their performance on programming assignments

were also recorded.

IV. RESULTS

A. What feedback component is more essential than others to
student learning?

To answer the question ”What feedback component is more
essential than others to student learning?”, we examined

and compared student programming assignment performance

across the three groups. The performance of 46 students from

three groups was summarized in Table 1.

TABLE I
STUDENT AVERAGE PERFORMANCE PER GROUP PER PROGRAMMING

ASSIGNMENT

Group
Student
numbers

Average Performance
Assignment 1 Assignment 2 Assignment 3

One 16 70 64.49 79.53
Two 15 95.41 86.25 83.75
Three 15 95 94.17 91.67

Full score of each assignment is 100.

One-way multivariate analysis of variance (MANOVA) was

applied to examine the differences in student performance

across the three groups. Using Pillai’s trace, there was a

significant effect being detected, V = 0.655, F(6, 84) = 6.823,

p < 0.01. The observed statistical power was 0.98.

The MANOVA was followed up with discriminant analysis,

which revealed two discriminant functions. The first function

explained 98.2% of the variance, cononical R2 = 0.63, whereas

the second explained 1.8%, canonical R2 = 0.03. In combina-

tion, these discriminative functions significantly differentiated

Group One from Group Two and Three, λ = 0.363, χ2(6) =

42.513, p < 0.01, but removing the first function indicated

that the second function did not significantly differentiate the

remaining two groups, λ = 0.970, χ2(2) = 1.280, p > 0.05. In

other words, the significant differences detected by MANOVA

only existed between Group One and Group Two / Three.

No significant difference was found between Group Two and

Three.

The findings show that when students only received What’s
wrong feedback, their performance significantly lagged behind

their counterparts receiving Gap feedback. However, no sig-

nificant difference was observed between the groups with and

without Hint feedback.

B. How do automated feedback configurations affect student
usage behavior?

To answer the question ”How do automated feedback con-
figurations affect student usage behavior?”, we conducted a

one-question survey at the end of the course to (1) confirm

that students indeed used the provided automated feedback,

and (2) to learn about group differences in terms of feedback

usage. The one question in the survey was:

How often did you check the feedback on Travis-CI?

A 4-point Likert scale was adopted for the question. Choices

for the question include:

(a) Rarely

(b) Sometimes

(c) Often

(d) Always

The four choices corresponded to points ranging from 1 to

4. The average of all 46 students was 3.72. One-way Analysis

of variance showed no significant difference across the three

groups, F(2, 43) = 0.124, p > 0.05. In other words, students

reported that they used the automated formative feedback

frequently regardless of which group they were in.

To further understand the group difference in feedback

usage, we aggregated student feedback seeking behaviors (i.e.,

commit & push) by day. When the aggregated commits &

pushes are plotted against the time, there is a clear difference

in commit & push numbers among the three groups. For

instance, students had 15 days to work on programming

assignment three (see Figure 3). In the first five days no clear

pattern can be found. In the remaining ten days, Group One

committed & pushed significantly more frequently than Group

Two and Three, especially during the last three days ahead

of the due date. However, there is no apparent frequency

difference between Group Two and Three. Similar effects

were observed on all three programming assignments. Overall,

students who only received What’s wrong feedback committed

& pushed more frequently than their counterparts receiving

Gap feedback. No significant difference was observed between

the groups with and without Hint feedback.
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Fig. 3. An example of commit & push numbers per group for a programming
assignment

V. DISCUSSION

Among the findings of this study, we would like to highlight

two points. First, the observed ”system gaming behaviors”

among students might be an indicator of ineffective feedback

design instead of students abusing automated feedback in-

tentionally. Given that nearly all students reported substantial

usage of automated formative feedback, it is safe to assume

that when a student committed & pushed their code to GitHub,

they intended to seek feedback. Based on this assumption,

it is obvious that students who only received What’s wrong
feedback sought feedback much more frequently than their

counterparts in Group Two and Three. If we only look at the

commit & push numbers of this group of students exclusively,

it is tempting to conclude that this group of students gamed the

system and abused automated feedback. Many prior studies

that had similar observations interpreted it as ”intentional

system gaming behaviors”, and further proposed limiting

the number of feedback students can get, or providing no

feedback prior to assessment at all [23], [30], [31]. However,

when we classified feedback into different types and tested

them individually in a controlled study, evidence against this

interpretation emerged. Students who only received What’s
wrong feedback sought feedback more frequently, but they

did not perform as well as their counterparts receiving more

fine-grained feedback. In other words, the reason this group of

students sought more feedback is not likely because they were

taking advantage of the unlimited feedback. On the other hand,

those students might not get the help they needed in problem

solving. They kept seeking more feedback simply to use it as

a confirmation to see if they successfully passed all test cases,

but they were rarely sure if they were on the right track.

Second, the effectiveness of hints delivered by automated

feedback deserves further investigation. Another important

finding from the results is that there was no significant

difference between students who received and those who did

not receive Hint feedback in either academic performance

or feedback-seeking frequencies. There are different ways to

interpret this finding. One possibility is that the Hint as a

feedback type was not implemented well enough to realize

its full potential in this study. Only adaptive hints for top

five errors per test case were implemented. For errors outside

of this scope no adaptive hints were provided. It is possible

that the summarized top five errors were not representative

enough to cover the errors students made during this exper-

imental course. As the result, students found hints of little

help. Some researchers may argue that the lack of multi-

level hints is another reason. We intentionally decided not to

implement hints in multiple levels in which the bottom level

is closest to revealing direct answers. This design was found

to stimulate system gaming behaviors and to be detrimental

to student learning in studies on intelligent tutor systems [22],

[23]. Another possible interpretation is that the comparisons

between expected and actual outputs provided sufficient in-

formation for students to move forward. It is worth noting

that students taking the experimental course were provided

multiple channels to have their questions answered, including

instructor office hours, teaching assistant office hours, and a

dedicated online Question & Answer platform where students

can ask learning questions to both instructors and their peers.

The process of debugging, research and fixing errors might

take time, but also provide students a valuable opportunities

to learn debugging [32], [33].

VI. LIMITATIONS

This study is not without limitations. The sample size

of this study is comparatively small. Although the sample

size was sufficient for a three-group controlled experiment,

it is unknown whether the findings can be generalized to

CS courses with significantly larger sizes, or outside of the

context of CS2. Future studies may consider replicating this

experiment in the context of a larger CS course, especially

a CS1. Additionally, no qualitative data on how students

actually used automated feedback were collected from the

experiment. Either in-depth interviews or observations can

provide richer information on student usage of automated

feedback and the relationship between usage and automated

feedback configuration. Future studies are recommended to

utilize both quantitative and qualitative methods to answer the

research question ”How do automated feedback configurations
affect student usage behavior?”.

VII. CONCLUSIONS

This study investigated the essential of meaningful auto-

mated feedback for programming assignments using a quasi-

controlled experiment. The results revealed that simply know-

ing what fails does not help students sufficiently, and may

stimulate system gaming behavior. Hints were not found

impactful on student performance or their usage of auto-

mated feedback. In contrast, the gap between the current and

expected states seem to provide sufficient information for

students to move forward and fix errors in the context of a

CS course where multiple support venues were available. We

discussed the implications of the findings and further provided

guidance on effective automated feedback design based on the

findings.
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