
Towards Integrating Behavior-Driven Development in Mobile
Development: An Experience Report

Qiang Hao
Western Washington University
Bellingham, Washington, USA

qiang.hao@wwu.edu

Ruohan Liu
Seattle University

Seattle, Washington, USA
rliu1@seattleu.edu

Abstract
Testing is an important yet often neglected skill in learning and
teaching of computing science at the college level. Prior studies
explored integrating test-driven development (TDD) into computer
science courses with some degree of success, but also observed
issues such as students’ lack of appreciation, expressed frustration,
and inconsistent adherence to TDD. TDD is a software development
methodology that emphasizes writing low-level unit test cases prior
to writing the corresponding portion of implementation. Behavior-
driven development (BDD) was proposed as an evolution of TDD
to emphasize software behavior from users’ perspective. BDD has
been widely adopted in industry, and holds great potential in ad-
dressing the issues in using TDD to improve students’ learning of
testing. However, BDD was rarely explored in enhancing students’
mastery of testing. Informed by the literature, this experience re-
port explored the integration of BDD into a mobile development
course. Students’ performance, attitude and feedback on BDD was
examined, and potential improvement on the integration of BDD
was discussed. The results of this report sheds light on how to
effectively integrate BDD into computer science courses.

CCS Concepts
• Social and professional topics→ Computer science educa-
tion; Student assessment;Adult education; •Applied computing
→ Education.

Keywords
behavior-driven development, test-driven development, testing,
mobile development, software engineering education, project-based
learning, continuous integration
ACM Reference Format:
Qiang Hao and Ruohan Liu. 2025. Towards Integrating Behavior-Driven
Development in Mobile Development: An Experience Report. In Proceedings
of the 56th ACM Technical Symposium on Computer Science Education V. 1
(SIGCSE TS 2025), February 26-March 1, 2025, Pittsburgh, PA, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3641554.3701875

1 Introduction
Testing is an important but often neglected skill in learning and
teaching of computer science at the college level. Many studies

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0531-1/25/02
https://doi.org/10.1145/3641554.3701875

argue that testing needs to be taught as early as possible considering
its importance in authentic settings [1, 2]. However, the lack of
teaching and learning of testing is still notable across computer
science courses at different levels [2, 3].

TDD, as a software development methodology, emphasizes writ-
ing unit test cases before writing the corresponding functions or
methods [4]. Prior efforts examining students’ experience of TDD,
performance on testing, and their appreciation of the testing-first
approach to programming achieved some success [1, 3], but also
observed challenges and issues, such as students’ lack of motivation,
frustration in writing trivial test cases, and lack of appreciation
for the testing-first approach to programming or software develop-
ment [5–7]. Interestingly, nearly all the studies on the learning and
teaching of testing were limited to the entry-level programming
courses.

While TDD remains a valuable approach to teaching testing in
computer science courses, its emphasis on low-level code might
contribute to many of the observed issues in prior studies, such
as frustration in writing test cases for every method and function
regardless of their triviality. Behavior-driven development (BDD),
perceived as the evolution of TDD, has the potential to address the
limitations of TDD. Same as TDD, BDD is a testing-first software
development method. Different from TDD, BDD focuses on writing
test cases that cover expected software behaviors from end users’
perspective [8, 9]. Although BDD has been widely adopted in in-
dustry in the last two decades, using BDD to enhance students’
mastery of testing has rarely been explored [10].

To address this gap, this experience report explored the inte-
gration of BDD into a mobile development course. This course
adopted the project-based learning approach, and is powered by
the usage of scaffolding, continuous integration, and generative
AI. Such tools were used in concert to optimize the integration of
BDD into regular learning and teaching activities. By exploring
students’ learning experience of BDD and testing, as well as their
performance on testing, we aim to shed light on the potential of
BDD in enhancing students’ mastery of testing. Additionally, we
hope to identify potential improvements for effective integration
of BDD into computer science courses.

In the following sections, we introduce the definitions of TDD
and BDD, explain their distinctions, and review their usage and
potential in enhancing students’ mastery of testing. After that, we
describe our course design and the approaches of learning and
teaching. We then report and discuss students’ learning experience,
performance on testing, and their attitude towards BDD. In the
end, we discuss possible improvements on integrating BDD into
computer science courses.

450

https://doi.org/10.1145/3641554.3701875
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3641554.3701875
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3641554.3701875&domain=pdf&date_stamp=2025-02-18


SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA Qiang Hao and Ruohan Liu

2 Background
2.1 Test-driven Development
Software testing is an important topic that is often neglected in
undergraduate CS education. The lack of teaching and learning
on testing is not only evident in entry-level CS courses, but also
prevalent in upper-level CS courses because testing does not have
a formal place in the existing curriculum [11, 12].

Prior studies have explored integrating test-driven development
into the teaching and learning of programming to enhance students’
mastery of testing. These studies observed positive effects, but
also identified challenges and issues [13]. Test-driven development
(TDD) is a software development methodology that emphasizes
writing low-level unit test cases prior to writing the correspond-
ing portion of implementation [4]. Prior studies on this topic have
observed beneficial results on integrating TDD into programming
courses, such as the studies by Buffardi and Edwards [14], Spacco
and Pugh [5], and Bowyer and Hughes [15]. However, challenges
and issues were also identified in teaching test-driven development,
such as students’ inconsistent adherence to test-driven develop-
ment, lack of appreciation of and motivation to use this approach,
and even frustration in attempting to achieve sufficient test cov-
erage [5–7, 15, 16]. Beyond such challenges and issues, it is worth
noting that nearly all the reported studies on enhancing students’
mastery of testing were limited to entry-level programming courses,
such as CS1 and CS2. Despite the importance of teaching testing to
students, the efforts to enhance students’ mastery of testing were
scarce. Of course, *in practice* most CS curricula never tried to
conform to CS2013. To our best knowledge, most studies on this
topic were conducted a decade ago, and few new studies on this
topic can be identified in recent years.

2.2 Behavior-driven Development
Behavior-Driven Development (BDD) is a popular software devel-
opment methodology that was proposed as an evolution of TDD to
address some of its perceived shortcomings. While TDD focuses
on ensuring the correctness of individual units of code, BDD ex-
tends this concept by emphasizing the behavior of the system from
the user’s perspective [8, 9]. BDD has been widely adopted in the
software industry over the last two decades [10].

BDD differs from TDD on three major aspects. First, BDD and
TDD have different focuses. TDD focuses on implementation de-
tails by writing unit tests for each pieces of functionality from the
developer’s perspective. In contrast, BDD focuses on system be-
haviors from the user’s perspective. BDD starts by defining the
desired system behaviors using user stories and scenarios [9]. Sec-
ond, BDD and TDD have different test granularity. TDD involves
writing fine-grained unit tests on individual functions or methods.
In contrast, BDD involves writing higher-level tests that verify the
expected system behavior in terms of user interactions and business
outcomes [17]. Third, BDD and TDD differ in terms of syntax. TDD
sticks to programming code, whereas BDD starts by describing
different usage scenarios prior to test case implementation [8, 10].
An example of BDD description is as follows:

Feature: User login
Scenario: Successful login with valid credentials

Given the user is on the login page
When the user enters a valid username and password
Then the user should be redirected to the dashboard

BDD has great potential to address the challenges and issues
observed when integrating TDD into programming and software
engineering courses. One one hand, the testing burden of BDD is
comparatively lower than TDD [10]. TDD emphasizes sufficient
coverage of unit test cases on every function and method [18]. In
contrast, BDD focuses on testing expected system behaviors instead
of every function or method [19]. This approach can reduce the
frustration of having to deal with seemingly trivial requirements to
implement tests for every method regardless of their importance,
making it easier for students to adhere to the testing process. On
the other hand, the intrinsic value of BDD is easier to observe than
TDD. The values of TDD can be relatively difficult to explain [5]. For
example, is it absolutely necessary to test every function or method?
Additionally, why is it unacceptable to implement first and follow
up with testing immediately? Prior studies have documented the
challenges in helping students appreciate the value of TDD [5, 6, 15].
In contrast, whether it is a seasoned developer or novice learner,
one needs to understand the expected system behaviors before
starting the implementation. That is where exactly BDD starts with,
and it is natural to think about testing such system behaviors as
the next step.

Given the potential of BDD, computing education community
should investigate its value in enhancing students’ mastery of test-
ing. However, to the best of best knowledge, empirical studies
or experience reports exploring the integration of BDD into the
computer science courses are not yet identified. Additionally, the
generative AI has made the teaching and learning of testing sig-
nificantly easier, especially in terms of the adoption of a testing
framework, and taking care of the repetition in writing test cases.
Considering such major changes, BDD deserves to be explored
in computer science courses at different levels, especially in soft-
ware engineering courses where complex system behaviors require
studying and analysis.

3 Course Design
This study aims to report an attempt to integrate BDD into a mobile
development course to enhance undergraduate students’ mastery
of testing. This course is an advanced-level course for computer
science majors. The implementation of this course followed the
conventions of many reported software engineering courses, and
was about full-stack mobile development. By "full-stack", it means
the development of both client and server software built upon one
or more frameworks, including a front-end framework and a server
framework, and a database management system. In particular, this
course used the following frameworks:

• React Native: a cross-platform framework for mobile appli-
cations

• NodeJS and ExpressJS: a JavaScript server framework
• MongoDB: a document-based database management system

The following subsections describe how this course was designed
in order to integrate BDD into the learning and teaching activities.

451



Towards Integrating Behavior-Driven Development in Mobile Development: An Experience Report SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

Figure 1: Sample projects covered in the lecture

3.1 Project-based Learning
Project-based learning (PBL) features an inquiry-based instruc-
tional approach, which engages learners in building knowledge
and developing skills through the creation of meaningful projects
and products based on real-life scenarios[20–22]. PBL was adopted
as the main learning and teaching approach of this course. There
is extensive evidence on the benefits of project-based learning on
students’ mastery of programming and software engineering, such
as enhanced engagement and motivation, development of problem-
solving skills, and exposure to real-world tools and practices [23–
25].

During lectures, students were introduced to a set of different
projects (see Figure 1). The instructor engaged students via live
coding and interactive teaching while moving towards completing
each project, so that students could pick up key knowledge com-
ponents of mobile development that go beyond particular projects
in this process. A key step the instructor took in this process was
to stick to the principles of BDD. Specifically, each project starts
with test cases covering critical expected behaviors of the mobile

Figure 2: What students learn about an assignment in a mini-
lecture

Figure 3: Testing guidelines on an assignment sample

application to develop. Jest, a JavaScript testing framework, was
used to structure all testing cases.

When it comes to assignments, each assignment was an indepen-
dent project that requires students to design and develop a mobile
application. For each assignment, students were detailed on the
involved expectation and challenges on three aspects, including
style, functionality, and testing via both assignment instruction and
a mini-lecture that lasted 20 to 30 minutes. The following image is
a snapshot of what students would learn on one of the assignments
during a mini-lecture (see Figure 2). Most importantly, students
were detailed on critical expected behaviors of the mobile appli-
cation to be developed, and required to start their assignment by
working on testing cases that cover such behaviors first. For ex-
ample, Figure 3 shows an example of the testing guidelines of an
assignment sample about developing a retro-styled calculator.

3.2 Scaffolding
Scaffolding was used to support integrating BDD into assignments.
Scaffolding is the instructional technique of providing temporal
and structured support to students as they learn and develop new
skills [26–28]. The techniques assist students to complete a task
or develop new understandings, so that students can later com-
plete similar tasks alone. As students become more proficient and
confident in their abilities, the support is gradually removed. Scaf-
folding has its unique benefits for the learning and teaching of
programming and software engineering because of the incremental
difficulty the subject and progressive support offered to students
[27, 29]

During lectures, most projects that were covered have a "second
stage" (see Figure 4 for an example). The second stage increases the
project difficulty but is still based on the first stage that has been
fully achieved, which lowered student cognitive load and provided
opportunities for them to pick up and reinforce new knowledge
components.

When it comes to assignments and the integration of BDD, scaf-
folding was also applied. For each assignment, students started with
a provided codebase. The codebase of the first assignment has more
than 2/3 of the test cases completed, and students only need to
finish the remaining 1/3. The percentage of completed test cases in

452



SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA Qiang Hao and Ruohan Liu

Figure 4: An example of multiple stages of the same project
covered in lectures

the codebase decreased and gradually become zero when students
were given the third assignment; there were 6 assignments in total.

3.3 Continuous Integration
A challenge introduced by integrating BDD into the teaching and
learning activities is the extra burden of assessing students’ test
code. When students are asked to write test cases as a part of their
assignment, they need to be assessed. The extra assessment could
pose challenge for instructors, and even deter many from making
testing a requirement in students’ assignments.

To address this challenge, we followed the recommended ap-
proaches from Buffardi and Edwards [7, 12] to use a combination of
version control and continuous integration. In the reported course,
Git and GitHub were used as the version-control system to handle
student assignment submissions because of their popularity in com-
puting education and wide adoption in industry [30, 31]; GitHub
Actions was used as the continuous integration tool to automate
grading and provide students formative feedback. All such tools are
widely adopted in industry and free for educators to use [32–34].
For every assignment of this course, a student started with a given
codebase that is structured and configured to trigger the prepared
test cases or the test cases students were required to develop. When
a student committed and pushed his or her code to GitHub, GitHub
Action would run students’ code against the test cases in a virtual
machine, and provide formative feedback to students via email.
When the deadline of an assignment is reached, GitHub Actions
can be used to facilitate or automate the grading tasks. The above
process is depicted as in Figure 5.

Figure 5: Workflow of assignment submission

Figure 6: Using ChatGPT to answer basic questions on using
Jest

3.4 Generative AI
We explored how generative AI can facilitate the integration of
BDD into the learning and teaching activities. Generative AI was
used throughout the course to speed up the development of test
cases. The steep learning curve of how to adopt a testing framework
is a common challenge that deters instructors from teaching testing
in the past [35]. The rapid advancement in generative AI has the
potential to make it easier to teach and learn how to adopt a new
testing framework and write test cases.

During lectures, live coding was used to demonstrate the full
process of adopting a testing framework and writing test cases.
Generative AI was used to speed up this process. Specifically, stu-
dents were shown how to combine ChatGPT and GitHub Copilot
to help with writing test cases. ChatGPT was used to answer basic
questions on how to use Jest (see Figure 6). GitHub Copilot was
used to auto-complete test cases based on given comments.

When it comes to assignments, students were encouraged to
followwhat is demonstrated in lectures to use ChatGPT and GitHub
Copilot to have their questions answered and speed up writing test
cases.

A common concern about using generative AI in learning and
teaching is that students may choose to finish the assignments using
one or a few prompts without much effort, which can be detrimental
to learning [36, 37]. To address this challenge, we designed each
of the assignments to have complicated design specifications and
functionality requirements, which are not possible to finish by
relying solely on the help of generative AI. For every assignment,
students were detailed on the involved expectation and challenges
on three aspects, including style, functionality, and testing, so that
they can have a thorough understanding of what they need to do
to complete the assignments. The complexity of the assignments
go beyond the capacity of generative AI. If one has to translate the
requirements of such an assignment into detailed descriptions, the
burden of communication will outweigh the task of completing the
assignment itself.

4 Course Experience and Takeaways
4.1 Overall course experience
35 students were enrolled in this course. Out of the 35 students,
26 are male and 9 are female students. The average grade was
84.67 out of 100. Students were overall satisfied with their course
experience. Their satisfaction was reflected in their answers to three
key questions:

• Q1: How is the course overall?

453



Towards Integrating Behavior-Driven Development in Mobile Development: An Experience Report SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

Figure 7: Students’ course experience reflected in answers to
three key questions

• Q2: Is the challenge level of this course conducive to learning
and/or professional development?

• Q3: Do the course assignments and lectures usefully com-
plemented each other?

Students’ answers to these questions are presented in Figure 7.
As is shown in the figure, students gave an average score of 4.4 to
the overall course experience out of 5.0. The challenge level of the
course was rated 4.6, and the tie between lectures and assignments
4.8 on average. Such scores indicate that students had an overall
satisfactory experience of the course. It is vital to know that students
are overall satisfactory, so that their experience on the integration of
BDD won’t be skewed or impacted by a negative course experience
[38].

4.2 Performance on testing
Student assignments were assessed on multiple different aspects,
such as design, functionality, and testing. On testing, students were
assessed on whether they followed the requirements of BDD and
covered all the required software behaviors in their test cases. Stu-
dent performance on testing fluctuated across different assignments,
but was overall solid (see Figure 8).

Figure 8: Students’ performance on the testing aspect per
assignment

The usage of Git and GitHub to manage student assignments
allows us to track student progress by checking each commit and
push, and determine if the requirements of BDD were strictly fol-
lowed. We observed a small percentage of commits and push that
violate the principle of BDD. In other words, those students chose
to start developing the target mobile application without writing
test cases first. However, such observation was limited in the first
one or two assignments and the percentage was very low (less than
10% and 6%). As the course progressed, students all started to follow
the BDD requirements without issues.

Beyond the requirements of BDD, we observed that students had
little difficulty in writing test cases for the required scenarios corre-
sponding to mobile app behaviors. Interestingly, we also observed
that some students were able to come up with usage scenarios of
the mobile app that are not listed in the assignment instruction,
and prepare testing cases accordingly.

Overall, students’ performance exceeded our expectation by
a big margin. Many of the struggles that we expected students
to have were not demonstrated in students’ code. Students’ solid
performance on testing might be due to the adoption of generative
AI tools, such as ChatGPT and GitHub Copilot. After all, when
students have a basic understanding of Jest, they can complete
most testing cases starting with a detailed comment. After that,
GitHub Copilot will help auto complete the corresponding test case,
and students only need to revise the parts that make less sense. Our
observations are alignedwith the findings ofmany prior studies that
generative AI allows students to focus on the most important things
in developing software [39–41]. In our particular case, the learning
curve of adopting and using Jest, a JavaScript testing framework, is
significantly alleviated. It is worth noting that mobile development
is an advanced computer science course. Because of that, we did
not encounter similar challenges and issues of using generative AI
observed in introductory programming courses [36, 42]. The above
findings propel us to reflect on the following two questions:

• How should students be evaluated on testing?
• Should students be encouraged to use generative AI to help
write test cases?

In the past, the answers to these questions often depended on the
course level, audience, and the goal of learning and teaching. Prior
to the rapid advancement of generative AI, if the goal is for students
to master the usage of a testing framework, it might be appropriate
to test students’ mastery of the syntax, semantics, and pragmatics
of the target testing framework; if the given course is introductory,
students might be required to write test cases for every function
or method in their assignments [16, 17, 35]. However, instructors
should anticipate for the issue of students overusing generative AI,
and the challenge of ensuring fairness in grading [39, 42].

As of now, instructors who want to improve the teaching and
learning of testing need to think about what the core is in terms
of mastering testing. If the appreciation of testing and grasp of
a workflow are more important, instructors need to think again
about discouraging students from using generative AI, and how to
evaluate the most important aspect of testing.

454



SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA Qiang Hao and Ruohan Liu

Figure 9: Students’ experience in following principles of BDD

Figure 10: Students’ tendency to adopt BDD in the future

4.3 Experience of learning testing and BDD
Students were asked three questions in terms of their experience
of learning testing and BDD. Students’ answers to the first two
questions are summarized in Figure 9 and Figure 10.

• Q1: Did you have a good experience in following principles
of behavior-driven development in writing test cases?

• Q2: Are you likely to stick to the principles of behavior-
driven development when developing mobile applications
in the future?

• Q3: Do you have any comments on your experience of learn-
ing testing?

Overall, students had a frustration-free experience of following
the principles of BDD to write test cases first when they worked
on the assignments. Additionally, students also expressed that they
were likely to adopt BDD in the future to some extent. This obser-
vation is also evidenced by students’ comments such as:

I like the testing first approach, and Copilot has made
writing test cases like a breeze.

There’s a lot of testing expected in this course, but I was
able to follow the requirements.

Interestingly, we did not observe the frustration of students in
writing test cases or following the testing first approach towards
completing all assignments. This might be due to a combination
of factors such as live coding that fully demonstrated the steps of
testing, or the usage of generative AI tools. Moreover, the difference

between TDD and BDD may also explain such a difference. TDD
asks for test cases of every function or method, which is tedious,
and sometimes trivial by nature. In contrast, BDD comes from
a different angle by thinking about testing critical and expected
software behaviors from the users’ perspective [8, 19].

Lastly, the discrepancy between student experience of following
BDD principles and their tendency to adopt BDD in the future is
notable. Students rated their experience highly, and the majority
agreed that they had a good experience in following the principles
of BDD to write test cases. However, students showed less interest
in adopting BDD in their future projects in comparison. The major-
ity of students rated the second question (Q2) neutral. A possible
explanation is that merely a good learning experience on testing
and BDD is insufficient for students to fully appreciate BDD and
the testing-first approach. Students might need to experience both
testing-first approach and software development without testing,
so that they can compare the results themselves to have a better
appreciation of BDD.

4.4 Potential improvements on integrating BDD
Despite the relatively positive results, there is still a lot of opportu-
nities to improve the effective integration of BDD into the learning
and teaching activities of this course.

One notable change that we can make to enhance the integration
of BDD is to slow down the pace of learning and teaching of testing.
An issue that we experienced was that students felt overwhelmed
at the beginning of the course because we attempted to teach too
many things in a short period of time, such as how to use Jest, what
BDD is, and how to plan testing of a software to build. On top of
that, we released the first assignment that involved BDD almost
at the same time. In the future implementation of the same course,
we will adjust the pace of instruction on testing and BDD to avoid
giving students a cognitive overload.

More importantly, our findings indicate that students’ appre-
ciation of BDD is hard to cultivate. A great learning experience
of testing and BDD does not necessarily guarantee that students
appreciate the principles of BDD, or that they would stick to it
in the future [5]. Future studies may consider experimenting with
failure-based education via one or two assignments that let students
develop software without testing, and let students "experience the
pain" of lower than expected grades when their software is buggy
because of the lack of testing [43]. The contrast between sticking to
BDD and otherwise may serve as a valuable education opportunity
for students to see the value of testing-first approaches to software
development.

5 Conclusions
This experience report explored the integration of BDD into a mo-
bile development course. This course adopted an approach that
combines the power of project-based learning, scaffolding, continu-
ous integration and generative AI. Students expressed that they had
a good overall course experience. Students’ performance, attitude
and feedback on BDD were examined, and potential improvement
on the integration of BDD was discussed. The results of this re-
port sheds light on how to effectively integrate BDD into computer
science courses.

455



Towards Integrating Behavior-Driven Development in Mobile Development: An Experience Report SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

References
[1] Andreas Schroeder, Annabelle Klarl, Philip Mayer, and Christian Kroiß. Teaching

agile software development through lab courses. In Proceedings of the 2012 IEEE
Global Engineering Education Conference (EDUCON), pages 1–10. IEEE, 2012.

[2] John Wrenn and Shriram Krishnamurthi. Will students write tests early without
coercion? In Proceedings of the 20th Koli Calling International Conference on
Computing Education Research, pages 1–5, 2020.

[3] Lilian Passos Scatalon, Ellen Francine Barbosa, and Rogerio Eduardo Garcia.
Challenges to integrate software testing into introductory programming courses.
In 2017 IEEE Frontiers in Education Conference (FIE), pages 1–9. Ieee, 2017.

[4] David Janzen andHossein Saiedian. Test-driven development concepts, taxonomy,
and future direction. Computer, 38(9):43–50, 2005.

[5] Jaime Spacco andWilliam Pugh. Helping students appreciate test-driven develop-
ment (tdd). In Companion to the 21st ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications, pages 907–913, 2006.

[6] Mohammad Ghafari, Timm Gross, Davide Fucci, and Michael Felderer. Why
research on test-driven development is inconclusive? In Proceedings of the 14th
ACM/IEEE International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), pages 1–10, 2020.

[7] Kevin Buffardi and Stephen H Edwards. Impacts of adaptive feedback on teaching
test-driven development. In Proceeding of the 44th ACM technical symposium on
Computer science education, pages 293–298, 2013.

[8] Muhammad Shoaib Farooq, Uzma Omer, Amna Ramzan, Mansoor Ahmad
Rasheed, and Zabihullah Atal. Behavior driven development: A systematic
literature review. IEEE Access, 2023.

[9] Hisham M Abushama, Hanaa Altigani Alassam, and Fatin A Elhaj. The effect of
test-driven development and behavior-driven development on project success
factors: A systematic literature review based study. In 2020 International Con-
ference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE),
pages 1–9. IEEE, 2021.

[10] Lauriane Pereira, Helen Sharp, Cleidson de Souza, Gabriel Oliveira, Sabrina
Marczak, and Ricardo Bastos. Behavior-driven development benefits and chal-
lenges: reports from an industrial study. In Proceedings of the 19th International
Conference on Agile Software Development: Companion, pages 1–4, 2018.

[11] Chetan Desai, David Janzen, and Kyle Savage. A survey of evidence for test-driven
development in academia. ACM SIGCSE Bulletin, 40(2):97–101, 2008.

[12] Kevin Buffardi and Stephen H Edwards. Reconsidering automated feedback: A
test-driven approach. In Proceedings of the 46th ACM Technical symposium on
computer science education, pages 416–420, 2015.

[13] Matjaž Pančur and Mojca Ciglarič. Impact of test-driven development on pro-
ductivity, code and tests: A controlled experiment. Information and Software
Technology, 53(6):557–573, 2011.

[14] Kevin Buffardi and Stephen H Edwards. Exploring influences on student adher-
ence to test-driven development. In Proceedings of the 17th ACM annual conference
on Innovation and technology in computer science education, pages 105–110, 2012.

[15] Jon Bowyer and Janet Hughes. Assessing undergraduate experience of continuous
integration and test-driven development. In Proceedings of the 28th international
conference on Software engineering, pages 691–694, 2006.

[16] Rick Mugridge. Challenges in teaching test driven development. In Extreme
Programming and Agile Processes in Software Engineering: 4th International Con-
ference, XP 2003 Genova, Italy, May 25–29, 2003 Proceedings 4, pages 410–413.
Springer, 2003.

[17] Avishek Sharma Dookhun and Leckraj Nagowah. Assessing the effectiveness of
test-driven development and behavior-driven development in an industry setting.
In 2019 International Conference on Computational Intelligence and Knowledge
Economy (ICCIKE), pages 365–370. IEEE, 2019.

[18] Dave Astels. Test driven development: A practical guide. Prentice Hall Professional
Technical Reference, 2003.

[19] John Ferguson Smart and Jan Molak. BDD in Action: Behavior-driven development
for the whole software lifecycle. Simon and Schuster, 2023.

[20] Katja Brundiers and Arnim Wiek. Do we teach what we preach? an international
comparison of problem-and project-based learning courses in sustainability.
Sustainability, 5(4):1725–1746, 2013.

[21] Dimitra Kokotsaki, Victoria Menzies, and Andy Wiggins. Project-based learning:
A review of the literature. Improving schools, 19(3):267–277, 2016.

[22] Ryan Parsons, Qiang Hao, and Lu Ding. Exploring differences in planning
between students with and without prior experience in programming. In 2023
ASEE Annual Conference & Exposition, 2023.

[23] Mehdi Jazayeri. Combining mastery learning with project-based learning in a
first programming course: An experience report. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, volume 2, pages 315–318. IEEE,
2015.

[24] Jun Peng, Minhong Wang, and Demetrios Sampson. Scaffolding project-based
learning of computer programming in an online learning environment. In 2017
IEEE 17th International Conference on Advanced Learning Technologies (ICALT),
pages 315–319. IEEE, 2017.

[25] Awad A Younis, Rajshekhar Sunderraman, Mike Metzler, and Anu G Bourgeois.
Case study: Using project based learning to develop parallel programing and soft
skills. In 2019 IEEE international parallel and distributed processing symposium
workshops (IPDPSW), pages 304–311. IEEE, 2019.

[26] Shu Lin, Na Meng, Dennis Kafura, and Wenxin Li. Pdl: scaffolding problem
solving in programming courses. In Proceedings of the 26th ACM Conference on
Innovation and Technology in Computer Science Education V. 1, pages 185–191,
2021.

[27] Paul Denny, James Prather, Brett A Becker, Zachary Albrecht, Dastyni Loksa,
and Raymond Pettit. A closer look at metacognitive scaffolding: Solving test
cases before programming. In Proceedings of the 19th Koli Calling international
conference on computing education research, pages 1–10, 2019.

[28] Keli Luo. Navigating the code: A qualitative study of novice programmers’
perceptions and utilization of automated feedback for self-regulated learning.
Education and Technology, 1(1), 2024.

[29] Chao Mbogo, Edwin Blake, and Hussein Suleman. Design and use of static
scaffolding techniques to support java programming on a mobile phone. In
Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer
Science Education, pages 314–319, 2016.

[30] Qiang Hao and Michail Tsikerdekis. How automated feedback is delivered
matters: Formative feedback and knowledge transfer. In 2019 IEEE Frontiers in
Education Conference (FIE), pages 1–6. IEEE, 2019.

[31] Qiang Hao, Jack P Wilson, Camille Ottaway, Naitra Iriumi, Kai Arakawa, and
David H Smith. Investigating the essential of meaningful automated formative
feedback for programming assignments. In 2019 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), pages 151–155. IEEE, 2019.

[32] Kai Arakawa, Qiang Hao, Wesley Deneke, Indie Cowan, Steven Wolfman, and
Abigayle Peterson. Early identification of student struggles at the topic level using
context-agnostic features. In Proceedings of the 53rd ACM Technical Symposium
on Computer Science Education-Volume 1, pages 147–153, 2022.

[33] Nils Rys-Recker and Qiang Hao. Early identification of struggling students in
large computer science courses: A replication study. In 2024 IEEE 48th Annual
Computers, Software, and Applications Conference (COMPSAC), pages 88–93. IEEE,
2024.

[34] Qiang Hao, David H Smith IV, Lu Ding, Amy Ko, Camille Ottaway, Jack Wilson,
Kai H Arakawa, Alistair Turcan, Timothy Poehlman, and Tyler Greer. Towards
understanding the effective design of automated formative feedback for program-
ming assignments. Computer Science Education, 32(1):105–127, 2022.

[35] David Janzen and Hossein Saiedian. Test-driven learning in early programming
courses. In Proceedings of the 39th SIGCSE technical symposium on Computer
science education, pages 532–536, 2008.

[36] Brett A Becker, Michelle Craig, Paul Denny, Hieke Keuning, Natalie Kiesler,
Juho Leinonen, Andrew Luxton-Reilly, JAMES PRATHER, and KEITH QUILLE.
Generative ai in introductory programming, 2023.

[37] James Prather, Brent Reeves, Juho Leinonen, Stephen MacNeil, Arisoa S Ran-
drianasolo, Brett Becker, Bailey Kimmel, Jared Wright, and Ben Briggs. The
widening gap: The benefits and harms of generative ai for novice programmers.
arXiv preprint arXiv:2405.17739, 2024.

[38] David H Smith IV, Qiang Hao, Filip Jagodzinski, Yan Liu, and Vishal Gupta.
Quantifying the effects of prior knowledge in entry-level programming courses.
In Proceedings of the ACM Conference on Global Computing Education, pages
30–36, 2019.

[39] Paul Denny, Juho Leinonen, James Prather, Andrew Luxton-Reilly, Thezyrie
Amarouche, Brett A Becker, and Brent N Reeves. Prompt problems: A new
programming exercise for the generative ai era. In Proceedings of the 55th ACM
Technical Symposium on Computer Science Education V. 1, pages 296–302, 2024.

[40] Beiqi Zhang, Peng Liang, Xiyu Zhou, Aakash Ahmad, and Muhammad Waseem.
Practices and challenges of using github copilot: An empirical study. arXiv
preprint arXiv:2303.08733, 2023.

[41] Ben Puryear and Gina Sprint. Github copilot in the classroom: learning to code
with ai assistance. Journal of Computing Sciences in Colleges, 38(1):37–47, 2022.

[42] Joyce Mahon, Brian Mac Namee, and Brett A Becker. Guidelines for the evolving
role of generative ai in introductory programming based on emerging practice.
In Proceedings of the 2024 on Innovation and Technology in Computer Science
Education V. 1, pages 10–16. 2024.

[43] Andrew A Tawfik, Hui Rong, and Ikseon Choi. Failing to learn: towards a unified
design approach for failure-based learning. Educational technology research and
development, 63:975–994, 2015.

456


	Abstract
	1 Introduction
	2 Background
	2.1 Test-driven Development
	2.2 Behavior-driven Development

	3 Course Design
	3.1 Project-based Learning
	3.2 Scaffolding
	3.3 Continuous Integration
	3.4 Generative AI

	4 Course Experience and Takeaways
	4.1 Overall course experience
	4.2 Performance on testing
	4.3 Experience of learning testing and BDD
	4.4 Potential improvements on integrating BDD

	5 Conclusions
	References



