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ABSTRACT
The identification of student struggles has drawn increasing inter-
ests from computing education and learning analytics communities
in recent years, considering the high failure rate and fast enroll-
ment growth of computer science courses. Prior studies on this
topic employed a multitude of data sources and methodologies with
varying degrees of success. Nearly all studies attempted to predict
low overall course performance to identify struggling students, risk-
ing oversimplifying student learning and struggles. Additionally,
many studies utilize data sources that are limited to their original
contexts or local student demographics, making it difficult to repli-
cate or put the findings into practice. To address these gaps, we
studied the feasibility of identifying student struggles at the topic
level using features that are agnostic to courses and contexts. Our
results show that it is possible to identify student struggles at a
more fine-grained level within days. Our findings contribute new
insights into automatic identification of student struggles at the
topic level on a large scale, which can be used to guide meaningful
interventions on student learning.
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1 INTRODUCTION
Early identification of student struggles has drawn increasing at-
tentions from research communities of both computing education
and learning analytics. This is driven by the fast enrollment growth
in computer science courses and their consistently high failure and
dropout rate. A continued challenge in computing education is that
the students who struggle the most are the least likely to seek help
[1, 2]. If these at-risk students can be identified early, it can enable
timely interventions, even when facing large student to teacher
ratios [3, 4].

The computing education and learning analytics research com-
munities have been studying various approaches to predict strug-
gling students. Early studies focused on investigating important
factors in predicting student performance, including prior course
performance, programming experience, demographics, and student
readiness [5–7]. These studies advanced the understanding of the
relationship between such factors and student performance in pro-
gramming courses, but yielded mixed results in practice [8, 9]. More
recent works have focused on collecting student data generated
throughout the course period and building models to predict stu-
dent overall performance. The nature and source of such data vary
greatly. Examples include student programming behavior, assign-
ment performance, clicker data, and question-and-answer interac-
tions on online forums [10–12]. These recent studies improved our
understanding of the characteristics of low- or high-performing stu-
dents, as well as the extent to which machine learning can predict
struggling students.

Despite the contributions of prior studies, the identification of
student struggles has been largely limited to the prediction of stu-
dent overall course performance. Prior studies generally equated
student struggles with low overall performance (e.g., < 50% overall
score), and used it as the prediction or classification target. Pre-
diction or classification models based on this definition provide
little actionable insights on where and when students may strug-
gle, which risks oversimplifying student learning. Additionally,
many prior studies utilized features specific to the study contexts
or student demographics and relied on complicated data collection
procedures, which limit the generalizability of their findings and
create challenges for successful future replications.

This study aims to address these issues by investigating early
identification of student struggles at the topic level in programming
courses. Being able to identify student struggles at the topic level
has the potential to provide actionable insights intowhen andwhere
students are encountering difficulties. This can allow instructors to
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provide higher quality and more targeted interventions. To increase
the replicability of our approach, our study utilized software popular
in programming courses such as version-control and automated
testing tools, and built an automated pipeline to collect student
performance and behavior data from such software. To strengthen
the generalizability of our findings, we built our models using
features that are agnostic to courses and contexts, based on data
collected from different courses taught by different instructors. Our
findings have shown that it is possible to identify student struggles
at a fine-grained level. Our results contribute new insights into
automatic identification of student struggles at the topic level on a
large scale, which can be used to guide meaningful interventions
and enhance student learning.

2 BACKGROUND
2.1 Early Studies
Early efforts to identify predictors of student learning struggles
primarily studied static factors. Static factors refer to student at-
tributes that are less susceptible to changes within the context of a
study. For example, a student’s college grade point average (GPA)
can be considered a static factor because it is unlikely to be changed
during a semester when students take a programming course.

A common approach is to collect biographical data in an at-
tempt to predict student course performance. For example, New-
sted used biographical information collected from a survey of 472
students across three semesters in an intro to FORTRAN program-
ming course [13]. Their aim was to provide better counseling to
prospective students and advise on teaching methodology. The
models that were created in the study were able to account for 41%
of the variation in the students’ grades. Other studies employed
biographical information to develop statistical models to aid in
admissions decisions to mixed success [14, 15].

Kurtz utilized an aptitude test that placed students into one of
three development levels to predict success in learning program-
ming [16]. While the sample size was fairly limited (𝑛 = 23), the
assigned development levels explained 66% of the variation in the
letter grades earned. On account of Kurtz’s encouraging results,
a later study by Barker and Unger used an abridged version of
Kurtz’s assessment to segregate students into high and low per-
formers [17]. The authors claimed that a predictor constructed from
their abridged assessment and other static factors such as college
GPA could be suitable for placement and advising. Werth explored
this idea using Kurtz’s intellectual development test along with bi-
ographical information, and two other tests [18]. Werth found that
Kurtz’s test, a cognitive style test, and two pieces of biographical
information correlated with letter grade.

Overall, the exclusive use of static factors is generally insufficient
to identify struggling students in a classroom setting. First, the data
is difficult to collect, often requiring surveys and/or lengthy exami-
nations. Furthermore, the models developed for one institution fail
to generalize to others. This would require each university, at a
minimum, to perform a series of studies to evaluate the efficacy of
another institution’s model using their own data – an expensive
and time-consuming process. However, the use of static factors in
admissions and placement is, while suspect, understandable given
the general lack of alternative data sources.

2.2 Recent Studies
Studies in recent years have began utilizing dynamic factors to
make predictions of student performance [8]. Dynamic factors are
ones which change throughout a term; thus their requisite data
is collected multiple times. Dynamic factors of particular interest
for the prediction of student performance are ones that respond
rapidly to a student’s evolving success in the course.

Clicker quizzes are short quizzes administered during a lecture
to gauge the students’ comfort with the subject and contribute to
an active learning environment [19, 20]. Porter et al. was able to use
clicker quizzes to predict students who later struggled on the final
exam early in the course [12]. Furthermore, they found that scores
from the first three weeks out of twelve were more predictive than
scores from any other set of weeks. Liao et al. expanded upon this
work by creating a machine learned model using the clicker quiz
data from one term and testing the model on data collected from a
subsequent term [21]. The model that they developed was capable
of producing high quality predictions of final exam scores after
only the first three weeks of twelve. The researchers later explored
other factors and found that, when available, grades in prerequisite
courses outperformed clicker quiz scores as predictors of student
success [3].

Other studies instead monitor how students interact with course
management systems. Zafra et al. collected student interactions
with discussion boards, quizzes, and assignments as well as the
amount of time each student spent in the forum [22]. The data was
used to train many classifiers, and the outputs of the individual clas-
sifiers were weighted to construct a more reliable multi-instance
classifier. Fire et al. went another direction and monitored which
students were working together, forming a graph [23]. The correla-
tion between key graph theoretical metrics and final exam score
was explored. Unfortunately, despite the novel approach, all models
failed to explain more than 17.5% of the variation. Other studies
track interactions with online learning materials offered as a part
of the course. Leppänen et al. monitored how long each element,
be it a paragraph or an image, of the online textbook was visible
on each student’s screen [11]. Similarly, Yang et al. collected click-
stream data from students watching lecture videos in a massive
online open course (MOOC) and used time series machine learning
techniques to develop a predictor to much success [24].

Perhaps the most fine-grain data source of interest is keystroke
data or compilation events collected by the IDE or a plugin running
in the IDE while students are programming. In 2006, Jadud pro-
posed a metric called the error quotient (EQ) which is a handcrafted
metric dependent on the type, frequency, and location of errors
[25]. While Jadud observed that EQ correlated with academic per-
formance, Petersen et al. found that the EQ parameters are highly
context dependent and furthermore, there are some contexts in
which no parameters result in an effective predictor [26]. Despite
this, variants of EQ have shown better success [27, 28]. Other stud-
ies using IDE data have turned to machine learning [29, 30]. These
studies appear to produce more reliable results compared to the
handcrafted methods. Unfortunately, the course setup required to
collect such data is inherently constrained. Either plugins would
have to be written for a variety of IDEs, or students would be
restricted in their choice of IDE/text editor.

Session: Predicting Success  SIGCSE ’22, March 3–5, 2022, Providence RI, USA

148



Other efforts to classify and predict struggling students involve
the use of version control (VC) systems. Such technologies are in-
valuable in industry, and used extensively in the classroom [31, 32].
In 2005, Mierle et al. utilized the now antiquated VC software CVS
to identify features which may act as predictors of course per-
formance [33]. Only three of the 166 features that were explored
demonstrated a significant correlation with course performance.
Later, in 2018, Guerrero-Higueras et al. further explored this idea,
this time using Git [34, 35]. In contrast to all previously mentioned
studies, this study was focused on predicting the students’ per-
formance on a particular assignment, not the course as a whole.
While the authors’ models appear to have performed well, it was
not stated if the predictions were performed using data that was
available before the assignment was due. If the models were in
fact trained and evaluated with data collected right up until the
assignment was due, the real world use cases are severely limited.
The window in which such predictions would be both possible and
of any use is restricted to after the assignment is due, but before the
assignment is graded. Sprint and Conci also explored the relation-
ship between students’ interactions with Git and their performance
in both assignments and the course [36]. They found two features
that showed a significant correlation with either the course grade
or the performance on a programming assignment. However, the
authors found that the identified correlations struggled to general-
ize across all courses studied. Still, their findings suggest that more
sophisticated nonlinear methods could be used to better predict
student performance.

Similar to [34, 35] and [36], Teusner et al. predicted which stu-
dents were struggling on specific assignments [37]. However, the
prediction of the struggling students was not Teusner et al.’s end
goal. Instead, they were investigating the effects of automated in-
terventions and bonus exercises delivered to struggling students in
a massive open online course (MOOC). This focus, necessitated the
in situ prediction of struggling students. A student was classified
as struggling if they spent more than a set amount of time on an
exercise. The simplicity of this prediction strategy is problematic,
as it fails to account for the multitude of reasons a student may
take extra time to complete an exercise. The authors recognize this,
stating that their predictor failed to discern the truly struggling
students from the ones that were simply working slowly. Predic-
tion efficacy aside, the time a student spends on an exercise is also
difficult to collect. It not only assumes that an assignment is broken
up into discrete exercises, but it also requires the knowledge of
exactly when, and on which exercise, a student is working. While
this is not a problem in the study’s original context, a MOOC, it
does prevent their methodology from being applied to traditional
course modalities.

2.3 Gaps
Prior studies on this topic, with few exceptions, sought to iden-
tify student struggles through binary classification on if a student
would fail a course or final exam in the end. This focus fails to
account for the dynamic nature of student learning progress and
student struggles, which risks oversimplifying student learning.
For example, every student that ultimately passes the course will

Courses Students Assignments Student
submissions

CS2 (face-to-face) 137 4 542
CS2 (online) 117 3 338
Data structures
(face-to-face) 58 3 169

Table 1: Basic information of participating students

be labeled as not struggling, despite the fact that many of those
students will still struggle on various topics throughout a term.

Furthermore, many prior studies relied on features which are
unique to their classrooms, or features that are difficult to track
or collect data on in many computer science courses. For example,
studies which utilize clicker quizzes rely on remote control devices,
which many classrooms may not be equipped with [12, 20, 21, 38].
As another example, studies which utilize clickstream or compiler
event data require trackers embedded in IDEs or text editors, limit-
ing students in the editors they can choose from [25, 27, 29, 30].

To address these gaps, we investigated the identification of stu-
dent struggles at the topic level in programming courses using
context-agnostic features. We utilized version control and auto-
mated testing as data sources – sources which we identified as
the two most popular tools in computing education – to avoid the
reliance on context-dependent features [39, 40]. Our findings con-
tribute to the understanding of automatic identification of student
struggles in programming courses on a large-scale.

3 RESEARCH DESIGN
This study is guided by one research question:

To what extent can we identify student struggles in programming
courses at the topic level using context-agnostic features?

3.1 Experiment Design
We conducted this study in the setting of a large university in the
northwestern United States. To strengthen the generalizability of
our findings and mitigate potential noise and variance, we involved
312 students taking three different programming courses offered
by different instructors and in different modalities (see Table 1).

To avoid oversimplification in identifying struggling students,
we collected student data at the topic level instead of the course level.
This is achieved by collecting student behavior and performance
data on all assignments per course. It is typical for a programming
course to assign multiple programming assignments, each address-
ing a particular and different topic that is covered by the course. The
courses that we collected data from are no exception. For example,
the Data Structures course we collected data from assigned three
individual programming assignments that covered one topic per
assignment, including sorting, searching, and graphs. As a result,
student data collected for each programming assignment could be
leveraged to identify struggling students at the topic level.

Additionally, we focused on student data that can be easily col-
lected in modern computer science learning and teaching activities,
in order to increase the practicality of our findings and facilitate
future replications. After examining over 500 empirical studies
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Figure 1: A sample of automated testing on Travis-CI.

published between 2010 and 2020 in the main publication venues
of computing education research1 in the past five years, we iden-
tified version-control systems and automated testing as the two
most popular tools adopted in modern computer science classrooms
measured by keyword frequency. Version-control systems and au-
tomated testing are widely supported by a range of efficient tools
that can be easily adopted by computer science instructors. More
importantly, version-control systems and automated testing, in
tandem, can provide fine-grained data on student behavior and
performance, such as when students worked on an assignment and
whether students successfully achieved a series of milestones over
a period of time. To ensure that the collected data is agnostic to
the course context or students who took the course, we set up the
experiments with no extraneous assumptions about the students or
course context. We used no survey data (which may be limited by
context or demographics) or specialized devices which are in any
way unique to the classroom.

Our study adopted Git and GitHub as the version-control sys-
tem, given their wide popularity in computer science courses and
the ease at which data can be collected through GitHub APIs [39].
We utilized Travis-CI, a continuous integration service, to support
automated testing and feedback considering its easy configuration,
research-based efficacy in providing automated testing and feed-
back to students, and its capacity for real-time data collection [41].
Additionally, Travis-CI also supports data collection through its
APIs. To ensure consistency across all classes, we worked with
instructors to develop multiple unit tests for each assignment that
provide sufficient test coverage. Each test case included feedback
that reported the expected and actual outputs from the student’s
submission when a unit test failed (see Figure 1).

3.2 Data collection and processing
Data was collected from 1049 student submissions on 10 program-
ming assignments from three different courses. For each assign-
ment, a student maintained a separate GitHub repository. While
working on an assignment, students periodically committed and
pushed their progress to GitHub. Automated testing was performed
on each push, and feedback was sent to students through emails,
and could also be viewed through the Travis-CI web interface. We
collected data on each push and computed the following features
accordingly:

1ACM ICER, ACM SIGCSE, ACM ITiCSE, ACM Transactions on Computing Education,
and Computer Science Education Journal

• Normalized timestamp: The timestamp of the push expressed
as a ratio where 0 is when the assignment was posted and 1
is when the assignment is due.

• Normalized time of day: The time of day expressed as a ratio
where 0 is 00:00:00 and 1 is approximately 23:59:59.

• Additions and deletions: The number of lines added and re-
moved.

• Test ratio: The ratio between the number of passed test cases
and the number of total test cases.

• Error ratio: The ratio between the number of previous pushes
that failed to compile and the number of previous pushes.

• First commit timestamp: The normalized timestamp of the
first commit.

• Number of pushes with no progress: The number of pushes the
student has made with their test ratio remaining constant or
decreasing.

• Highest test ratio: The maximum test ratio that had been
achieved thus far by the student.

Whether a student struggles on an assignment (a topic) is the
target of our analysis. For the ground truth labels, the natural
definition of "struggling on an assignment" is if the student achieves
less than a certain percentage on said assignment. However, this
definition fails to account for the different standards that students
set for themselves. As such, we defined a student as struggling if,
by the time the assignment is due, they failed at least one test case
– thus, only the students whose code passed every test case were
labeled as not struggling. This is supported by Arakawa et al. which
found a substantial overlap between our definition of struggling
and students that were confirmed to be struggling via testimony
[42]. On average, 20.9% of all students were labeled as struggling
across all assignments. In contrast, less than 8% of students failed a
course across the three courses.

4 RESULTS
4.1 Machine Learning Methodology
Due to our data being sequential with differing sequence lengths,
most machine learning techniques are unsuitable. Recurrent neu-
ral networks are the natural choice since our data is well-ordered.
Recurrent neural networks are capable of natively processing se-
quential data of an arbitrary length. In a typical neural network,
each neuron takes the outputs of the previous layer as input and
transforms them into a single output. A recurrent neuron, often
called a node, does the same, but it also maintains a hidden state
called the recurrent or the memory. Most recurrent neuron con-
structions differ in how they update their memory. The two types
of recurrent neural networks that we used in this study are the
vanilla recurrent neural network (RNN) and long short term mem-
ory network (LSTM). An LSTM node has more fine-grained control
over its memory than an RNN and, as a result, has more trainable
parameters than an RNN node.

In our preliminary investigations, we experimented with a single
node RNN and LSTM, a wide RNN and LSTM each with one layer
of three nodes, and a deep RNN and LSTM with multiple layers
of multiple nodes. While the single node and wide architectures
performed well, the deep architectures tended to overfit, even after
applying regularization. The few combinations of hyperparameters
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Model type AUROC Variance # of parameters
RNN 0.821 0.011 13
LSTM 0.910 0.0021 46
Wide RNN 0.910 0.0034 43
Wide LSTM 0.922 0.0019 160
Baseline model 0.744 N/A

Table 2: Cumulative performance of the various models

that did not result in gross overfitting did not demonstrate appre-
ciable results when compared to the simpler models. Thus, we did
not explore the deep architectures further.

To serve as a point of comparison, we constructed a baseline
model that does not require pretraining. Given a sequence of com-
mits belonging to a student, the baseline model finds the line of
best fit to approximate the test ratio as a function of the normalized
timestamp. This approximated function is used to predict at what
time the student will achieve a test ratio of 1 corresponding with
all tests passing. Thus, the student can be classified as struggling if
they are predicted to finish after a predetermined threshold. This
threshold can be adjusted as necessary to affect the sensitivity and
specificity of the baseline model.

4.2 Model Evaluation
To better evaluate our methodology and mitigate potential effects
of heterogeneity in our dataset, we utilized 10-fold stratified cross-
validation. Additionally, because our dataset contains a class imbal-
ance, with only 20.9% of students being labeled as struggling, we
used the area under the receiver operating characteristic (AUROC)
as the metric by which we evaluated models [43].

We evaluated each model’s cumulative performance by making
a series of predictions for every commit sequence in the validation
dataset; one prediction for every commit. These predictions along
with the ground-truth labels were used to calculate the ROC. This
evaluates the performance of the model at making both early and
late predictions. The cumulative performance of each model is
reported in Table 2. Wide LSTM, as our best-performing model,
achieved a cumulative AUROC of 0.922 (see Figure 2).

The cumulative performance of a model is useful, but it does not
reveal howwell a model performs in terms of making accurate early
predictions. To achieve this, we presented the model performance
comparison in terms of how early a model can accurately identify
student struggles in Table 3. The best-performing model, wide
LSTM, required the data of 2.43 days to achieve a mean AUROC
≥ 0.7 on an assignment that lasted for 14 days. In contrast, the
RNN, required the data of 7.72 days while the baseline model only
requires the data of 6.3 days to achieve the same efficiency.

To gauge the real-time efficiency of our best-performing model,
we filtered the validation dataset to use data prior to various cutoff
times (i.e. data within the 50% of the assignment duration). Based
on that, we calculated the real-time performance of wide LSTM
using the filtered dataset. This result is reported in Figure 3. For
a more fine-grained analysis of the performance of the models,
we plotted all cutoff time-performance pairs, forming a real time

Figure 2: Receiver operating characteristic of thewide LSTM

Figure 3: Real time performance curve of the wide LSTM

performance curve. It is worth noting that wide LSTM achieved
stable performance after 25% into the assignment duration time.

5 DISCUSSION
All machine learning models substantially outperformed the base-
line model in terms of cumulative performance. While the baseline
model achieved a cumulative AUROC of 0.744, the best machine
learningmodel, wide LSTM, achieved a cumulative AUROC of 0.922,
and theworst, RNN, achieved a cumulative AUROC of 0.821. Despite
achieving superior cumulative performance, not every machine
learning model performed equally well in terms of how early an ac-
curate struggle identification can be achieved. The best-performing
model was the wide LSTM, which only required the data of 2.43
days to achieve a mean AUROC ≥ 0.7 on an assignment that lasted
for 14 days. In contrast, the RNN, required the data of 7.72 days
while the baseline model only requires the data of 6.3 days. These
findings support the possibility of building an automated machine
learning system that identifies student struggles at the topic level
and provides actionable insights for instructors to intervene student
learning.

Our study was conducted on a more fine-grained level compared
with prior studies — we investigated the early identification of
struggles on the topic level, whereas most prior studies focused on
predicting student overall performance [8]. Although the results
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Model type Mean AUC ≥ 0.7 Mean AUC ≥ 0.8 AUC lower bound ≥ 0.7 AUC lower bound ≥ 0.8
RNN 7.72 days 14.0 days – –
LSTM 3.97 days 6.28 days 8.16 days 11.02 days
Wide RNN 3.86 days 4.30 days 8.16 days 13.45 days
Wide LSTM 2.43 days 2.43 days 4.08 days 4.52 days
Baseline model 6.3 days – N/A N/A

Table 3: The earliest a model can make a prediction in a 14-day assignment with various AUC constraints

are not directly comparable, our models performed on par with, or
better than, many models constructed to predict overall student
success or failures if the same metrics are being used. Machine
learning models constructed to predict student overall performance
generally have an accuracy rate between 70% and 90%. For instance,
one study conducted by Castro-Wunsch et al. achieved an accuracy
of 85.29% (after bias correction) when predicting which students
would fail a course [30]. When the models are restricted to data
from the first 40% of the term, the accuracy drops to 72.90%. While
their results are not directly comparable to ours, the wide LSTM
achieved an AUROC of 0.7 (analogous to 70% accuracy) within the
first 30% of an assignment duration.

More importantly, training efficient models that identify strug-
gling students may not require features specific to courses, context,
or student demographics. Many prior studies relied on features that
are specific to their contexts or student bodies, utilized surveys and
quizzes to understand student prior programming experience, or re-
trieved student information from the institutions [8, 12, 25, 26, 44].
These methods may contribute to training a very performant ma-
chine learning model, but also pose serious challenges to replica-
tions as well as automating the identification of struggling students,
considering the amount of manual labor required for these methods.
In contrast, our findings revealed that efficient models can be de-
veloped and trained without such data. The data that was collected
in this study came from version-control (GitHub) and automated
testing (Travis-CI) software that are widely popular in computer
science courses [39, 40]. Both data sources support automatic data
collection through their APIs. The design as such can lower the
barriers and costs associated with future replication studies on this
topic, and highlights the viability of building a fully automated
system that identifies student struggles.

Additionally, our findings demonstrated that it is possible to
build efficient machine learning models that identify student strug-
gles at the topic level based on the data collected in just a few days,
regardless of the topic, course, or students. In addition to the impli-
cation of fully automated systems that specialize in early struggle
identification, this finding also has implications for educators in
terms of how to help students proactively in a large-scale computer
science course. The conventional approach to help students in need
is to hire capable teaching assistants and set up as many office
hours as possible. However, there is abundant research showing
that students who need help the most are reluctant to seek help
[1, 2]. If instructors can be equipped with a system that automati-
cally identifies struggling students, they might be able to mobilize
teaching assistants to intervene on student learning struggles with
more guided information on when and where the struggles might

happen. This will have substantial positive impact on failure and
dropout rate of programming courses [37].

6 LIMITATIONS
The most substantial limitation of our study is the size and compo-
sition of our dataset. The size of our data is relatively small, given
just over one thousand submissions and five thousand commits. All
data was collected from a single institution. The extent to which
our results can be effectively replicated in other contexts requires
further investigation. A significantly larger dataset from multiple
institutions can potentially enable more experiments, resulting in
models with better performance. If possible, future studies should
consider collecting data at the topic level from different higher
education institutions.

Additionally, the replication of the data pipeline of our approach
requires the use of version-control tools. Despite the wide pop-
ularity of version-control tools (e.g., Git) in many programming
courses, not every programming course has adopted such tools.
When the learning of programming has to happen at the same time
as the learning of how to version-control code in the same course,
it may lead to cognitive overload for some students. If a student
misunderstands version-control, they might commit and push the
code too frequently or not at all. In such a scenario, the efficiency of
the model to identify student struggles could be negatively affected.
Future studies may study the extent to which the noise in data can
impact the data collection and model construction.

7 CONCLUSIONS
This study investigated the feasibility of identifying student strug-
gles at the topic level using context-agnostic features that can be
collected automatically in large-scale programming courses. Our
results have shown that it is possible to identify struggling stu-
dents at a more fine-grained level within a short period of time.
Our results contribute new insights into automatic identification of
student struggles at the topic level on a large scale, which can be
used to guide meaningful interventions on student learning, as well
as building software that connects to popular tools in programming
courses and automating student struggle identification in computer
science courses.
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