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ABSTRACT 
This research investigated the impacts of active learning 
environments and instructional methods adapted to such 
environments on the academic performance of computer science 
students. Two consecutive studies involving a total of 267 novice 
students in the same course were conducted across two different 
semesters. The course was taught by the same instructor and set 
up with two different sections. One section was taught in a 
conventional lecture hall, while the other was taught in an active-
learning classroom with adapted instructional methods. Active 
learning environments and the adapted instructional methods were 
found to have significantly positive effects on students’ learning 
outcomes. Fine-grained results grouped by major were discussed. 
The findings of this study demonstrate positive effects of active 
learning environments in computer science education, thereby 
adding to the literature on both computer science education and 
learning environments. 
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1 INTRODUCTION 
Interaction among peers is essential to many active learning 
strategies, such as team-based learning or problem-based learning 
[1]. The design of learning environments can either promote or 
inhibit peer interaction during class time [2-3]. Traditional lecture 
halls typically have fixed seats facing a central focal point, which 
is not conducive to peer interaction [Fig. 1]. 

As an alternative, active learning classrooms have been 
proposed and developed in the last two decades [4, 5]. An active 
learning classroom is characterized by round tables and movable 
chairs. Every table can accommodate five to nine students [Fig. 
1]. Whiteboards are usually accessible through digital equipment, 
such as laptops and projectors, on each table. Such a design seeks 
to foster peer collaborations and the visibility of every student to 
the whole classroom [1]. 

Despite considerable efforts to develop and implement active 
learning classrooms at multiple institutions, there remains a lack 
of evidence on how active learning environments impact the 
learning outcomes of students [6]. Existing empirical studies were 
conducted and replicated by the same groups of scholars, and 
were also limited to a narrow range of academic fields [4, 5, 7]. 
To our best knowledge, there are no empirical studies examining 
the effects of active learning environments in computer science 
education.  

To fill this gap, the current study investigated the impact of 
active learning environments and instructional methods adapted to 
such environments on the academic performance of students in 
computer science education.  
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Figure 1: Classroom comparisons at University of Georgia 
(Left: a traditional lecture hall; Right: an active-learning 

classroom). 

2 RELATED WORKS 

2.1 Active Learning and Computer Science 
Education 

Computer science education, as a discipline, stresses both 
comprehension and knowledge retention. Active learning has been 
proposed and studied from different angles to encourage students 
to participate in knowledge construction and take control of their 
learning, such as peer instruction, paired programming, and 
cooperative learning [8-10]. However, few studies have explored 
active learning through investigating the effects of learning 
environments. Physical spaces can either encourage or discourage 
different styles of teaching and learning [4, 11]. Active learning 
environments have been found significant in improving students’ 
learning outcomes and perceptions of learning experiences in a 
limited range of academic fields such as physics, chemistry or 
biology. 

2.2 Active Learning Environments 
Research on active learning environments has continuously drawn 
attention from academics over the last decade. A review of the 
literature revealed three major research projects investigating the 
effects of active learning environments on students’ learning 
outcomes and experiences, including SCALE-UP project at North 
Carolina State University, TEAL project at Massachusetts 
Institute of Technology, and ALC project at University of 
Minnesota. The SCALE-UP project investigated the impact of 
active learning environments and the effects of course redesign in 
the context of physics education, and found that active learning 
environments and adapted course design could improve problem-
solving capabilities and decrease course failure rates [4]. The 
TEAL project studied the usage of virtual simulations in an active 
learning environment also in the context of physics education. The 
researchers of TEAL projects demonstrated that students had 
lower failure rates and better conceptual understandings in an 
active learning environment [5, 8]. The ALC project, with similar 
focuses of the other two projects, was studied in the contexts of 
chemistry and biology education [6, 7, 9]. The ALC project also 
reported positive impacts of active learning environments. 

While findings from these projects promote the concept of 
active learning environments to a great extent, the research suffers 
from two major problems. The first problem is the lack of 
replication. The majority of previous studies were conducted by 

the same groups of researchers, and limited to academic fields 
such as physics, chemistry and biology. As more institutions 
implement active-learning classrooms, more studies within 
different academic fields are in need. The second problem is that 
many previous studies had methodological or research-design 
issues. The noted issues include a lack of control for confounding 
variables, increased randomness of significant results, and misuse 
of inaccurate models. As examples, both the SCALE-UP project 
and TEAL project involved multiple iterations of similar courses. 
New factors such as classroom modification and changes of 
instruction materials and methods were brought in over the 
iterations, but the factors were not well controlled in either of the 
two projects [12]. The study by Baepler et al. [7] under the ALC 
project conducted multiple t-tests over same two groups of 
students without reducing the possibility of getting random 
significant results. The study by Cotner, et al. [13] also under the 
ALC project used a linear regression model with less than 50% 
accuracy rate to predict students’ grades, and further used the 
prediction result for comparison purposes.  

By studying the impacts of active learning environments and 
instructional methods adapted to such environments in the context 
of computer science education, this study aims to contribute to the 
literature of both computer science education and learning 
environments, and make progress in terms of methodology. 

3 RESEARCH DESIGN 
Two studies adopting control-group design were conducted in the 
same course at University of Georgia. The course serves the 
purpose of an introduction to computing and programming. 
Students in other majors are also allowed to take this course. 

Two class sections were set up in the course and taught by the 
same instructor for experimental purposes. The major differences 
between the two class sections include learning environments and 
content delivery formats. First, one class section was conducted in 
a conventional lecture hall, while the other was conducted in an 
active learning (SCALE-UP) classroom designed to promote 
collaborative work. Second, the content delivery formats were 
adapted to the learning environments of particular class sections. 
In the traditional lecture section, students were encouraged to read 
the course textbook outside of class but receive the content in a 
traditional lecture style. In the active learning section, the students 
were assigned daily reading and short quizzes based on content 
from the course textbook and videos developed by the instructor. 
These short quizzes were graded assignments that had to be 
completed before the beginning of class.  During a typical lecture, 
students in the active learning section worked in groups of three to 
solve more complex questions on material read prior to the start of 
class. As they worked, the professor and three undergraduate 
teaching assistants (TA) were available to answer questions and 
work through solutions on the whiteboard. In addition, both the 
traditional and the active learning sections had a breakout lab 
section with 24-30 students enrolled in each.  In these lab classes, 
the students worked with the guidance of two TAs to solve lab 
and project assignments. The lab met twice per week for 50  
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minutes. All students in both class sections completed three non-
overlapping exams developed by the instructor.  

A preliminary study in such a course was conducted in fall 
2016. Students’ major information was collected. The follow-up 
study in the same course was conducted in spring 2017. Students’ 
information, including major, gender and age, was collected 
through a survey. 

4 RESULTS OF TWO STUDIES 

4.1 Preliminary Study 
4.1.1 Descriptive Summary. 162 students participated in the 
preliminary study. The descriptive summary established similarity 
in terms of major between the two class sections [Table 1]. 

Table 1: Descriptive summary of fall 2016 participants. 

 Conventional-
Lecture Section 

Active-Learning 
Section 

Numbers of Students 103 59 

Major   

Computer Science Major 53.4% 52.5% 
Non-Computer Science Major 46.6% 47.5% 

 
4.1.2 Comparisons between Class Sections. As the three exams 
covered different learning content and therefore potentially had 
different difficulty levels, the exam results were standardized to 
enable comparison among the exams. It is noteworthy that 
students in the active-learning section tended to outperform their 
counterparts in the conventional lecture section [Fig. 2]. 

Repeated Measures MANOVA was conducted to further 
investigate the effects of class type and major on students’ 
academic performance in the three exams. All two-way and three-
way interaction among major, class type and exam were also 
examined. Using Pillai’s trace, the exam*class type interaction    
 

(p < .05) was significant. However, separate univariate t-test on 
the class type revealed non-significant difference between class 
sections across the three exams. 

4.2 Follow-Up Study 
4.2.1 Descriptive Summary. To further minimize the possibility 
that some unobservable variables overinfluence the observed 
effects in our experiments, a follow-up study was conducted.  105 
students participated in the follow-up study. Students’ information 
– major, gender and age – was collected through a survey. A 
descriptive summary of the participants is presented in Table 2.  

The group differences on gender is less than 5%. Although 
students in the active-learning section (M = 19.41) tended to be 
younger than students in the conventional lecture section (M = 
19.86), t-test did not show any significant difference between the 
two groups [t(103) = 1.26; p = 0.21]. The difference on whether 
majoring in computer science between the two groups was 24.8%. 
This difference is likely due to randomness given that students did 
not have prior knowledge of class sections before enrolling in the 
course. 

Table 2: Descriptive summary of spring 2017 participants. 

 Conventional-
Lecture Section 

Active-Learning 
Section 

Numbers of Students 64 41 
Gender (Binary)   

Male 57.8% 56.1% 
Female 42.2% 43.9% 

Major (Binary)   
Computer Science Major 31.3% 56.1% 
Non-Computer Science 
Major 

68.8% 43.9% 

Age (Continuous)   
< 20 48.4% 63.4% 
≥ 20 and < 22 42.2% 26.8% 
≥ 22 9.4% 9.7% 

 

 

Figure 2: Standardized exam results of fall 2016 semester. 
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4.2.2 Comparisons between Class Sections. In alignment with the 
preliminary study, each exam result was standardized to allow  
comparisons across exams. The comparison result confirmed the 
findings in the preliminary study that students in the active-
learning section tended to outperform students in the conventional 
lecture section [Fig. 3]. 

Repeated Measures MANCOVA was conducted to further 
examine the effects of four attributes, including class type, gender, 
age and major on students’ academic performance in the three 
exams. All two-way and three-way interaction among the 
attributes and exam were examined. Using Pillai’s trace, the 
exam*class type interaction (p < .01) and exam*class type*major 
interaction (p < .05) were both significant. This finding indicated 
that the relationship among exam results, class type and major 
needed further examinations. Separate univariate ANOVA testing 
effects of the attributes and their interactions on exam results 
further confirmed the significant difference between class sections 
on academic performance (p < .01) [Table 3]. 

 
 
 
 
 
 
 
 
 
 

 
 

Table 3: Between-group effects of all attributes and their 
interactions on exam results. 

Attribute Mean 
Square 

F Significance 
Level 

age 11.54 5.72 0.02* 
class type 13.84 6.86 0.01* 
major 7.33 3.63 0.06 
gender 0.70 0.35 0.56 
class type * major 2.02 1.00 0.32 
class type * gender 5.93 2.94 0.09 
gender * major 0.12 0.06 0.81 
class type * gender * major 0.38 0.19 0.67 

* p < 0.05; **p < 0.01; ***p < 0.001. 
 
 

Given that the exam*class type interaction (p < .01) and 
exam*class type*major interaction (p < .05) were both significant 
in the Pillai’s trace, there is a need to further study the interaction 
between class type and major. To gain a deeper understanding 
their interaction, we further conducted individual t-test on each of 
the three tests a) by major and b) by both major and class type. 
Bonferroni Correction was applied to the significance levels to 
avoid possibly false positive results. The adjusted significance 
levels were: 

* p < 0.016; **p < 0.003; ***p < 0.0003 

 

Figure 3: Standardized exam results of spring 2017 semester. 
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First, no significant difference was found between computer 
science majors and non-computer science majors on any of the 
exam results. Second, computer science majors performed 
significantly better in the active-learning section than in the 
conventional-lecture section on 1st exam (p < .016) and 3rd exam 
(p < .003). The visualization shows a very clear pattern for 
computer science majors in two different class sections [Fig. 4]. 
Nonetheless, non-computer science majors performed 
significantly better in the active-learning section than in the 
conventional-lecture section only on 3rd exam (p < .016), and no 
clear patterns could be found among non-computer science majors 
[Fig. 5].  
 

5 DISCUSSION 
This research contributes to the literature of both computer 
science education and learning environments. First, although there 
have been reports that active learning classrooms are implemented 
for computer science courses [14], no empirical evidence existed 
on whether active learning environments make a difference to 
learning outcomes in computer science education. The empirical 
evidence of this research fills this gap, and confirms the positive 
effects of active learning environments in computer science 
education. 

Second, the contrast between the preliminary study and the 
follow-up study demonstrates that unobservable factors, such as 

 

Figure 4: Standardized exam results of computer science majors. 

 

Figure 5: Standardized exam results of non-computer science majors. 
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age or gender could overinfluence the observed effects. By 
controlling such factors, active learning environments and the 
instructional methods adapted to such environments show 
significant importance in learning outcomes.  

Third, this research makes significant advances in terms of 
research design and methodology in comparison with previously 
published studies. The results of the preliminary study provided 
valuable information about whether further control of 
unobservable variables was in need, which helped us improve the 
design of the follow-up study. The application of Bonferroni 
Correction helped controlling the chances of getting random 
significant results. The combination of Repeated Measures 
MANCOVA and the follow-up univariate ANOVA confirmed the 
actual effects of the factors.   

This research is not without limitations. Although the effects 
of active learning environments and instructional methods adapted 
to such environments were found significant, the two attributes 
were treated as a single factor in this study. The question to what 
extent active learning environments are effective in computer 
science education remained unanswered. Future studies may 
consider further controlling the instructional method to single out 
the effects of learning environment, and answer two questions 
raised by this study:  

 
1. To what extent can the findings of this study be 

replicated? 
2. What are the reasons behind different patterns in learning 

outcomes between computer science majors and non-
computer science majors? 

6 CONCLUSIONS 
Active learning environments, as a research topic, has gained 
substantial attention from both academics and institutions over the 
last decade. This research, using two control-group design 
studies, confirmed the significant positive effects of active 
learning environments and instructional methods adapted to such 
environments on academic performance in computer science 
education, and contributed to the literatures of both computer 
science education and learning environments. To build upon the 
findings of this research, we call for more studies, especially 
replication studies, in college-level computer science education 
and other academic fields. 
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