
Quantifying the Effects of Prior Knowledge in Entry-Level
Programming Courses

David H Smith IV
Western Washington University

smithd77@wwu.edu

Qiang Hao
Western Washington University

qiang.hao@wwu.edu

Filip Jagodzinski
Western Washington University

filip.jagodzinski@wwu.edu

Yan Liu
University of British Columbia

yan.liu@ubc.ca

Vishal Gupta
University of British Columbia
vishal.gupta@alumni.ubc.ca

ABSTRACT
Computer literacy and programming are being taught increasingly
at the K-12 level with more students than ever matriculating in
college with prior programming experience. Accurately assessing
student programming skills acquired in high school can inform
college faculty about the range of competencies in introductory
programming courses. The tool predominantly-used for assessing
past CS knowledge and skills is a survey, which lacks quantitative
rigor. This study aims to (1) quantify the effects of prior knowledge
in entry-level programming courses and (2) compare the different
measurement approaches of student prior knowledge in program-
ming, including surveys and aptitude tests. The results of this study
reveal that a discrepancy exists between the results of surveys
and aptitude tests. Consistent with prior survey studies, our sur-
vey results showed that the effects of student prior programming
knowledge faded gradually during the course period. In contrast,
the aptitude test results indicated that the effects of student prior
knowledge did not weaken over time. The accuracy of both mea-
surements and implications for instructors were further discussed.

CCS CONCEPTS
• Applied computing → Education;

KEYWORDS
CS1; prior knowledge; assessment; performance prediction

ACM Reference Format:
David H Smith IV, Qiang Hao, Filip Jagodzinski, Yan Liu, and Vishal Gupta.
2019. Quantifying the Effects of Prior Knowledge in Entry-Level Program-
mingCourses. InACMGlobal Computing Education Conference 2019 (CompEd
’19), May 17–19, 2019, Chengdu,Sichuan, China. ACM, New York, NY, USA,
Article 4, 7 pages. https://doi.org/10.1145/3300115.3309503

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CompEd ’19, May 17–19, 2019, Chengdu,Sichuan, China
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6259-7/19/05. . . $15.00
https://doi.org/10.1145/3300115.3309503

1 INTRODUCTION
K-12 students today have unprecedented, and ever increasing, ac-
cess to Computer Science (CS) courses and resources. A recent poll
conducted by Gallup and Google concluded that 76% of U.S. schools
offered some form of CS learning opportunity, 60% offered at least
one CS course, and 40% offered a class that involved programming
[1]. From this, it can be expected that an increased proportion of
students enrolling in undergraduate computer science courses have
some prior knowledge related to programming and/or CS funda-
mentals. However, the survey also noted that although many com-
puter science related activities are offered in modern high schools,
great variances exist in terms of what is offered by such activities,
including general computer classes, introductory programming
courses as well as a wide variety of clubs [1]. Furthermore, consid-
ering the lack of curricula consistency across K-12 in the United
States, students’ prior knowledge in computer science is likely to
be heterogeneous and challenging to measure [2].

Studies investigating this topic generally divide the broader con-
cept of "prior knowledge" into a number of factors asking students
to self-evaluate their abilities and/or experiences. These factors are
then compared to students’ scores with the goal of determining
which play the largest role in predicting students performance.
Previous studies have found that students with prior CS or gen-
eral STEM related knowledge are more likely to outperform their
peers [3–6]. Other factors explored by these studies include factors
such as "personal comfort", and how a student perceives their own
programming abilities. Students exhibiting a strong sense of per-
sonal comfort as well as confidence in their own abilities have been
shown to outperform their peers [6, 7].

Despite the relatively consistent findings, it is worth noting that
all the prior studies used self-answering surveys as their primary
means of data collection. Such data collection methods are only
effective for determining where a student first came in contact with
a subject, how long they stayed in contact with it, as well as a
self-evaluation of their abilities. Such surveys neither validate nor
quantify a student’s perceived abilities. Given the great variance of
computing education at the high school level, successful completion
of a high school CS course may mean very different things to
students from different schools or school districts (e.g., whether
students have taken a CS course in high school is a frequently-used
survey question). Consequently, the reliability and generalizability
of the survey results might be questionable. To the best of our
knowledge, alternative measurements to surveys, such as validated

Paper Session: CS1 Observations Part 1 CompEd ’19, May 17–19, 2019, Chengdu, Sichuan, China

30

https://doi.org/10.1145/3300115.3309503
https://doi.org/10.1145/3300115.3309503

aptitude tests, are rarely used to measure student prior knowledge
in programming.

To fill this gap, this paper aims to investigate different measure-
ments of prior programming knowledge on student performance in
the context of introductory programming courses (CS1). This study
also explores using a validated aptitude test to measure prior knowl-
edge. The results of this study provide insights into the accurate
quantification of student prior knowledge in programming. These
insights could be used by instructors to gain the most accurate view
of their classes’ prior knowledge and thus aid them in their course
design and calibration.

2 RELATEDWORK
Students develop their knowledge by interpreting incoming infor-
mation through the lens of their existing knowledge, beliefs, and
assumptions [8]. As a result, sufficient, appropriate and accurate
prior knowledge aids in the learning process, whereas insufficient,
inappropriate and inaccurate prior knowledge may have the oppo-
site effect [9]. These aforementioned studies further discuss why
teachers should take into consideration the extent of students’ prior
knowledge and structure their courses appropriately with the goal
of building new knowledge atop that which already exists. Research
conducted in a variety of fields on the impact of prior knowledge has
concluded that prior knowledge is a key factor in student learning
[10–14].

Factors involving or related to prior knowledge, and its effective-
ness in predicting CS1 students’ performance, explored by prior
studies include:
• Exposure to and performance in math classes
• Exposure to and performance in core science classes (chem-
istry, physics, biology, etc.)
• Previous exposure to computer programming and CS con-
cepts (high school, college, online, club, etc.)
• Previous non-programming computer experience
• Student programming comfort levels
• Perception of personal ability

The roles of both mathematical prowess and prior programming
experience have been the most investigated by far with nearly all
studies pointing to their significance in predicting students suc-
cess. Bergin and Reilly [7] performed a replication study seeking
to reproduce the significance of existing math, science, and pro-
gramming knowledge in predicting students performance in a CS1
course. Their findings corroborate previous studies where math
and/or prior programming experience were found to influence most
future perfromance [6, 15–18]. Wilson and Shrock [6] investigated
12 factors, with math and science courses included among them,
that might affect the learning ability of students in introductory
computer science courses. They concluded that each of these factors
plays a significant role in predicting student performance. Hagan
and Markham investigated the effects of prior programming ex-
perience as measured by the number of programming languages
a student had previously used [18]. Their findings point to stu-
dents previous knowledge as having initially positive performance
benefits. The level to which students with prior experience out-
performed their peers was related to the number of programming
languages a student had experience with.

There is a long-standing belief that there exists a correlation
between student lecture attendance and their subsequent course
performance[4]. Veerasamy et al. investigated the connection be-
tween prior programming knowledge, lecture attendance, and course
performance and compared their results against the longstanding
idea that lecture attendance plays a significant role in predicting
student performance[4]. Their results not only show that students
with prior programming knowledge outperformed their peers, but
that those same students had significantly lower lecture attendance.

In addition to simply looking at the level of a student’s prior
experience, many studies investigate the impacts of factors such
as self-efficacy and student comfort levels. The effects of student
cognitive skills and self-efficacy were investigated alongside prior
knowledge by Bergin and Reilly [7]. They found a student’s per-
ception of their own abilities to be the most significant factor in
predicting their performance, even above that of prior knowledge.
In Wilson and Shrock’s investigation of 12 factors that may affect
learning ability, they also investigated the effects of self-efficacy
[6]. Their findings corroborate with that of Bergin and Reilly in
that a student’s perception of their own abilities had a significant
impact on their performance throughout thea course.

The effects of prior knowledge and experience by separate gen-
ders has also been investigated by multiple studies [5, 15, 19].
Wilcox and Lionelle administered surveys prior to the start of term
and as well as after the term’s completion with questions primarily
focusing on prior programming experience and personal comfort
levels within the entire student body as well as between genders
[5]. Their findings reaffirm the significance of student’s comfort
levels and prior knowledge in performance prediction. Female stu-
dents were shown to have lower rates of both when compared to
their male peers. A study also investigating the roles of aptitude
in math and science as well as prior programming knowledge in
student performance found that female students achieved scores
consistent with their male peers [15]. It should be noted the student
body consisted of male and female students with similar levels of
prior knowledge which may have skewed results. With regard to
the student body as a whole, students with prior programming
knowledge significantly outperformed their peers. Additionally,
the link between aptitude in math and science and performance in
introductory programming courses was reaffirmed.

Given the significance of prior knowledge related to STEM con-
cepts in predicting student performance in CS1 courses, the ques-
tion arises as to the duration of their effects. Morrison [20] inves-
tigated this with regard to prior knowledge gained through high
school computer science courses. Their findings show that students
who had completed high school level computer science courses sig-
nificantly outperformed their peers on both the courses’ validated
pretest as well as assessments performed throughout the course.
The performance gap between students with high school experi-
ence and those without had narrowed to the point of obsolescence
by CS2. Wilson and Shrock [6] suggest the effects of prior knowl-
edge may be even more short-term than suggested by Morrison[20].
Their study showed the effects of prior programming experience
to be limited to the midterm, disappearing by the time of the final
exam.

All prior studies discussed in this section used self responding
surveys as their primary means of data collection. Although this

Paper Session: CS1 Observations Part 1 CompEd ’19, May 17–19, 2019, Chengdu, Sichuan, China

31

means of evaluation is effective for establishing the means by which
a student initially came in contact with concepts, as well as a self
evaluation of their skills, it does not quantify their current knowl-
edge. This study seeks to add to the literature on this subject by
using both a survey and a validated assessment to evaluate a student
body and compare their results to their exam performance.

3 RESEARCH DESIGN
3.1 Participants and Contexts
This study was conducted on a group of students enrolled in a
large university in the North American Pacific Northwest. A total
of 62 students taking a CS1 over a regular academic term partic-
ipated in this study. Students were expected to complete a set of
programming assignments individually and two comprehensive
programming projects collaboratively. In addition, two exams, in-
cluding one midterm and one final, were administered.

CS1 in this study is being used in consistency with most prior
computing education studies conducted in North America, which
refers to the first core programming course [21, 22]. At the institu-
tion in question, students taking CS1 typically have declared their
major intentions as CS, but are not yet in the CS major. Whether
a student can be admitted to the CS major is dependent on their
performance in CS1 and a set of sequential core courses. Many
CS departments also offer a set of elective CS courses aiming at
growing student interests in CS, such as "computer science and
society" and "computational thinking", which involve little to no
learning and teaching of programming. Such courses are referred
to as "college-level CS courses prior to CS1" in this study. It is
worth noting that college-level CS courses prior to CS1 are not
necessarily more advanced than computer science courses being
offered in high school.

3.2 Measurements
Both a survey and an aptitude test were given to students at the
beginning of the semester to measure their prior knowledge in pro-
gramming. The survey, composed of seven questions, was adopted
from a study done by Wilcox and Lionelle [5].

The aptitude test, known as Programming Aptitude Test (PAT),
was developed and validated by Tukiainen and Monkkonen [23].
The PAT evaluates a students grasp of fundamental programming
concepts as well as conceptual solution design, but does not involve
actual programming. There have been many efforts in developing
language-independent assessments of CS1 knowledge in the last
decade, such as Foundamental CS1 Assessment (FCS1) and Sec-
ond CS1 Assessment (SCS1) [21, 24]. However, such instruments
were developed to serve the goal of measuring student learning
performance after taking CS1, but not prior to taking CS1. To our
best knowledge, PAT developed by Tukiainen and Monkkonen [23]
is the only instrument aiming at student prior knowledge before
taking CS1. Different from FCS1 and SCS1 that involve complex pro-
gramming concepts, PAT measures mainly generic problem solving
strategies and capabilities. Given the specific goals of this study,
PAT was chosen to measure student prior programming knowledge
prior to taking CS1.

In addition, student performance on the midterm and final ex-
ams were collected and regarded as their academic performance.

Both midterm and final exams were developed by the instructor.
Although neither midterm nor final exam was validated, both of
them carefully mapped the tested concepts of FCS1 developed by
Tew and Guzdial [21] to language-dependent questions.

4 RESULTS
4.1 Descriptive Summary
Participants consisted of 71% male and 29% female students ranging
in age from 18 to 43 years old (male: M = 20.20, SD = 3.90; female: M
= 19.67, SD = 1.50). Students largely consisted of young adults under
the age of 20 with numbers dwindling as age increased. In terms of
prior experience, it was found that, of the pool of 17 female students
enrolled in the class, 64.7% had no high school CS experience with
the remaining 35.3% having had taken one or more classes. As for
the college experience, all had taken at least one or more prior CS
elective courses (e.g., computational thinking). Male participants
showed slightly higher participation in high school CS courses with
44.2% having taken at least one or more. Male students also showed
a high level of participation in prior college-level CS courses with
93.0% of male participants having taken one or more.

There were 48 course participants at or under the age of 20 with
the remaining 14 falling above that age line. Students at or under
the age of 20 tended to have had more experience via high school
courses with 47.9% having taken at least one or more compared
to only 28.6% of those over 20. Both groups had high levels of
participation in college-level computer science courses with 93.8%
of those under the age of 21 having completed at least one or more.

4.2 Results of Survey Responses
Linear regression was applied to examine the effects of surveyed
factors on student midterm exam performance. As is seen in Table 1,
the surveyed factors in total accounted for 18.32% of the variance
in academic performance. Student completion of high school level
computer science courses (t = 2.434 , p < 0.05) as well as amount
of time dedicated to self study (t = 2.253, p < 0.05) were found
to be significant factors in the linear model. The completion of
college-level computer-science-related courses or a students level of
confidence prior to beginning the course were not found statistically
significant.

Table 1: Linear Regression of Survey Responses on the
Midterm Exam

R2 R2ad j ∆ F β t
Midterm 0.2636 0.1832 3.281
CS in College -2.932 -1.155
CS in High school 5.974* 2.434
Self Learning Time 5.813* 2.253
Confidence 2.202 0.779
Age -3.823 -1.544
Gender 5.443 1.021
* p <0.05; **p <0.01; ***p <0.001

When the same factors were applied to a linear model for final
exam performance, it was found that the surveyed factors only

Paper Session: CS1 Observations Part 1 CompEd ’19, May 17–19, 2019, Chengdu, Sichuan, China

32

explained 8.068% of the observed variance in student performance
(Table 2). None of the factors, however, were found to have any
significance in predicting the exam’s results. In other words, the
influences of the surveyed factors became much weaker on student
final exam performance than their midterm performance.

Table 2: Linear Regression of Survey Responses on the
Final Exam

R2 R2ad j ∆ F β t
Final 0.1711 0.08068 1.892
CS in College -3.473 -1.172
CS in High school 1.170 0.409
Self Learning Time 5.483 1.822
Confidence 2.272 0.689
Age -5.472 -1.894
Gender 6.302 1.014
* p <0.05; **p <0.01; ***p <0.001

4.3 Results of the Programming Aptitude Test
Same as the analysis on student survey responses, linear regression
was applied to explore student PAT performance on their midterm
and final exam performance. Age and gender were controlled for
analysis consistency (Table 3). The results showed that student PAT
performance along age and gender explain 22.54% of the variance
in midterm performance. Student PAT performance was found to
be highly significant in predicting their midterm performance (t =
3.903, p < 0.001).

Table 3: Linear Regression of PAT Performance on the
Midterm Exam

R2 R2ad j ∆ F β t
Midterm 0.2635 0.2254 6.918
PAT 9.091*** 3.903
Age -5.326* -2.308
Gender -1.487 0.291
* p <0.05; **p <0.01; ***p <0.001

When the same factors were tied to final exam results (Table 4)
the model was found to explain 18.49% of the variance in perfor-
mance. Student PAT performance was once again found to be a
highly significant predictor of their final exam performance (t =
3.317, p < 0.01). Different from the surveyed factors, the predictive
power of student PAT performance was found consistently strong
on both their midterm and final exam performance.

Table 4: Linear Regression of PAT Performance on the
Final Exam

R2 R2ad j ∆ F β t
Final 0.225 0.1849 5.612
PAT 8.7147** 3.317
Age -5.9625* -2.290
Gender 0.6099 0.106
* p <0.05; **p <0.01; ***p <0.001

4.4 Correlation Analysis
Given the significant differences in predictive power between sur-
vey factors and PAT performance on student learning, correlational
analysis among survey factors and PAT performance was further
conducted (Table 5).

Surprisingly, the correlations between PAT performance and any
other survey factor is below 0.2, and none of them were found to
be significant. In other words, taking CS courses (prior to CS1) in
high school or college does not necessarily have a positive effects
on the mastery of programming-language-independent problem
solving. In contrast, confidence was found significantly correlated
with both taking CS courses prior to CS1 in college (r = 0.353, p
< 0.01) and self-learning time (r = 0.361, p < 0.01). In other words,
taking CS courses prior to CS1 and self-study may boost student
confidence in successful completion of CS1.

Table 5: Pearson Correlations Between Survey Factors and
PAT Performance

CSC CSH Confid SLT PAT

CS in College 1
CS in High school 0.0190 1
Confidence 0.353** -0.111 1
Self Learning Time 0.0910 0.0698 0.3607** 1
PAT -0.0897 0.0522 -0.0393 0.1130 1

CSC: CS in College, CSH: CS in High school, Confid: Confidence,
SLT: Self Learning Time

5 DISCUSSION
5.1 Consistency of Findings
Surveys, as the conventional measurement approach of student
prior knowledge, have been used widely in prior studies. Overall,
these studies [5, 15, 20] have found that student prior knowledge
in programming significantly influences their performance. How-
ever, the significance of these influences became smaller over time,
whether it is over the course of one semester or across two different
entry-level courses.

Such findings were consistent with those of the survey results
of this study. It was found that the number of computer science
courses taken at high school and self-learning time had significant
influences on student midterm exam performance, but the effects
were no longer detectable for their final exam performance. Al-
though the findings on the gradually weakened effects of student

Paper Session: CS1 Observations Part 1 CompEd ’19, May 17–19, 2019, Chengdu, Sichuan, China

33

prior knowledge were consistent with that of prior studies, it is
worth noting that such factors had limited power in predicting
student academic performance. If survey results are to be trusted
and used as guidance for course design, instructors can rest as-
sured that given some time every student will catch up and perform
equally well. However, considering the low predictive power of
the survey factors, the conclusion that students with all levels of
prior knowledge can perform equally well might not be so easily
reached.

5.2 Which Measurement Approach is Better?
The second research focus of this study was to compare the results
of both surveys and aptitude tests. As opposed to surveyed factors,
student PAT performance was found to be the most significant
influencing factor in midterm and final exam performance.

The significance of these results could indicate the PAT as be-
ing a more accurate measurement of student prior knowledge in
programming when compared to survey. A fundamental source
of error existing within the survey collection method is the am-
biguity held within its answers. For instance, in the question of
self-study time, there exists no objectively quantifiable amount
of time that would constitute "a lot". Even the question of prior
courses is open to ambiguity as it fails to consider two important
factors, course content and student performance in the course. The
validated aptitude test eliminates such errors by providing students
with a range of question on fundamental programming concepts,
all with objectively correct or incorrect answers, and grading their
performance.

The correlation analysis seems to corroborate that PAT is a more
accurate measurement of student prior knowledge in programming.
Taking CS courses prior to CS1 in college has low correlation with
student PAT performance but high correlation with confidence
in successfully completing CS1. One possible explanation for this
finding is that taking courses such as computing and society or
computational thinking can help boost student overall confidence
in CS, but does not necessarily help improve their problem-solving
capabilities in programming. The variations and lack of consistency
of such courses may further contribute to such a result.

Though the PAT proved to be a superior predictor of perfor-
mance it lacks the indications of where students acquired prior
knowledge that surveys provide. The combined use of the PAT and
survey results as a means of prior knowledge evaluation produces
a more complete picture of the various factors that influence ex-
pected performance. The collection of such data affords instructors
a better idea of their class’s overall prior knowledge and therefore
their expected performance. This information can then be used
to better calibrate course content/structure to the given student
bodies expected capabilities.

6 LIMITATIONS AND FURTHER DIRECTIONS
A few limitations may hinder the generalizability of this study.
First, this study was conducted on a sample of 62 students at a
single institution. The findings may be different if multiple classes
taught by different instructors from different institutions are in-
volved. Future studies may consider replication at a larger scale.
Second, the adopted validated test, Programming Aptitude Test,

was developed and validated in 2002 [23]. Considering the curricu-
lum development in computer science in the last two decades, the
results of this test may not provide an accurate portrayal of student
capabilities today. Future studies may investigate the necessity of
developing a new instrument to accurately measure student prior
knowledge in programming. Furthermore, this study did not inves-
tigate the influences of student prior programming knowledge in
their long-term performance (e.g., performance in sequential pro-
gramming courses). To provide a complete picture of the impacts
of student prior programming knowledge on their achievement,
the understanding of both its short-term and long-term impacts
are both necessary. Longitudinal studies adopting both surveys and
validated tests may serve this purpose in the future.

7 CONCLUSIONS
Although the effects of prior knowledge have been examined in a va-
riety of fields, most such studies opted to use self-reported surveys
as the only measurement approach. The survey can indeed shed
light as to whether or not a student has been previously exposed
to related topics, but may not accurately measure the amount of
knowledge a student has retained. This is especially true given that
great variance exists in terms of what students may have previously
learned, as happens to be the case with introductory programming
courses. This study seeks to bridge this gap by comparing two
measurements of student prior programming knowledge, including
both surveys and aptitude tests. Although prior findings through
surveys were consistent with those in this study, we detected a
significant difference between the survey responses and aptitude
test results. Survey results show the effects of previous experience,
specifically that gained from high school, to have an impact only
on midterm performance. Aptitude test performance, however, was
shown to have significant impacts on both the midterm and final.
Given the importance of student prior knowledge in course design
and delivery, more studies exploring its role should be conducted
using a standardized test as a means of evaluation.

8 APPENDIX
A PROGRAMMING APTITUDE TEST
Question 1:
The company has information of their employers in three different
lists. You have acquired all three lists, which all have little bit dif-
ferent information depending in the purpose of the list. The lists
have following information of the employees:
• List 1: the number, the name, the occupation and the depart-
ment (List 1 is ordered by the number of employee to ascending
order)
• List 2: the name, the number, the address, the phone number,
and the SSN (List 2 is organized to alphabetic order by the
name)
• List 3: the number, the SSN, salary and some secret informa-
tion (List 3 is ordered by the number to ascending order)

Your job is to make a report of those employees whose salary is
greater than $2,000. The report has to display the name, the address,
the department and the salary of the employees. Describe how you
would solve the problem.

Paper Session: CS1 Observations Part 1 CompEd ’19, May 17–19, 2019, Chengdu, Sichuan, China

34

Question 2:
Let i and j be both integers between 0 and 10 (inclusive). List all
values of i and j, that make the expression to be always true:
• (i>=1) and (i<=5)
The expression is true when i has values:
• (j>=7) or (j<=3)
The expression is true when j has values:

Question 3:
Try to determine the general form of the series by the given series
of words, and write a word sequence, that is next on the series.
• bce , bbcde , bbbcdde , ...
• bcace , bcacacace , bcacacacacace , ...
• abcccdd , abbccccdd , abbbcccccdd ...

Question 4:
Your job is to sum up 50 numbers and at the end report the sum and
the count of numbers that were positive numbers (>0). Describe
how you would solve the problem or write in a pseudo-code.

B SURVEY
Question 1:
Did you take computer science related courses in college?
• I took one CS related course in college
• I took more than one CS related courses in college
• Never

Question 2:
Did you take computer science courses in high school?
• I took one CS course at high school
• I took more than one CS courses at high school
• Never

Question 3:
How much time did you spend on self-learning & teaching of pro-
gramming outside of school?
• A lot of time
• Some time
• Little time

Question 4:
How would you like to describe yourself in terms of programming?
• Have a lot of experience in programming
• Have some experience in programming
• Have very limited experience in programming

Question 5:
How confident are you in your ability of programming?
• Very confident
• Somewhat confident
• Not confident at all

Question 6:
What is your gender?
• Male

• Female
• Other

Question 7:
What is your age?

REFERENCES
[1] Google Inc. & Gallup Inc. Trends in the state of computer science in u.s. k-12

schools. 2016. URL http://goo.gl/j291E0.
[2] André Schäfer and Rainer Brück. Teaching strategies for undergraduate laborato-

ries with students having heterogeneous prior knowledge. In Global Engineering
Education Conference (EDUCON), 2013 IEEE, pages 112–117. IEEE, 2013.

[3] Anya Tafliovich, Jennifer Campbell, and Andrew Petersen. A student perspective
on prior experience in cs1. In Proceeding of the 44th ACM Technical Symposium
on Computer Science Education, SIGCSE ’13, pages 239–244, New York, NY, USA,
2013. ACM.

[4] Ashok Kumar Veerasamy, Daryl D’Souza, Rolf Lindén, and Mikko-Jussi Laakso.
The impact of prior programming knowledge on lecture attendance and final
exam. Journal of Educational Computing Research, 56(2):226–253, 2018.

[5] Chris Wilcox and Albert Lionelle. Quantifying the benefits of prior programming
experience in an introductory computer science course. In Proceedings of the 49th
ACM Technical Symposium on Computer Science Education, SIGCSE ’18, pages
80–85, New York, NY, USA, 2018. ACM.

[6] Brenda Cantwell Wilson and Sharon Shrock. Contributing to success in an
introductory computer science course: A study of twelve factors. In Proceedings
of the Thirty-second SIGCSE Technical Symposium on Computer Science Education,
SIGCSE ’01, pages 184–188, New York, NY, USA, 2001. ACM. ISBN 1-58113-329-4.
doi: 10.1145/364447.364581. URL http://doi.acm.org/10.1145/364447.364581.

[7] Susan Bergin and Ronan Reilly. Programming: Factors that influence success.
ACM Sigcse Bulletin, 37:411–415, 01 2005. doi: 10.1145/1047124.1047480.

[8] James V Wertsch and C Addison Stone. The concept of internalization in vygot-
sky’s account of the genesis of higher mental functions. Lev Vygotsky: Critical
assessments, 1:363–380, 1999.

[9] Marie K. Norman, Marsha C. Lovett, Michael W. Bridges, Michele di Pietro,
Susan A. Ambrose, and Richard E. Mayer. How Learning Works: Seven Research-
Based Principles for Smart Teaching. Jossey-Bass, 2010.

[10] Jeffrey Alan Greene, Lara-Jeane Costa, Jane Robertson, Yi Pan, and Victor M.
Deekens. Exploring relations among college studentsâĂŹ prior knowledge,
implicit theories of intelligence, and self-regulated learning in a hypermedia
environment. Computers & Education, 55(3):1027 – 1043, 2010.

[11] Gregor Kennedy, Carleton Coffrin, Paula de Barba, and Linda Corrin. Predicting
success: How learners’ prior knowledge, skills and activities predict mooc perfor-
mance. In Proceedings of the Fifth International Conference on Learning Analytics
And Knowledge, LAK ’15, pages 136–140, New York, NY, USA, 2015. ACM.

[12] R. M. Rias and W. K. Yusof. Animation and prior knowledge in a multimedia
application: A case study on undergraduate computer science students in learning.
In 2012 Second International Conference on Digital Information and Communication
Technology and it’s Applications (DICTAP), pages 447–452, 2012.

[13] Stergios Tegos and Stavros Demetriadis. Conversational agents improve peer
learning through building on prior knowledge. Journal of Educational Technology
& Society, 20(1):99–111, 2017.

[14] Belle Selene Xia and Elia LiitiÃďinen. Student performance in computing ed-
ucation: an empirical analysis of online learning in programming education
environments. 42:1–13, 11 2016.

[15] Pat Byrne and Gerry Lyons. The effect of student attributes on success in
programming. SIGCSE Bull., 33(3):49–52, June 2001.

[16] R. R. Leeper and J. L. Silver. Predicting success in a first programming course.
SIGCSE Bull., 14(1):147–150, February 1982.

[17] Laurie Honour Werth. Predicting student performance in a beginning computer
science class. pages 138–143, 1986.

[18] Dianne Hagan and Selby Markham. Does it help to have some programming
experience before beginning a computing degree program? SIGCSE Bull., 32(3):
25–28, July 2000.

[19] University of Kent. Computer programming aptitude test. https://www.kent.ac.
uk/ces/tests/computer-test.html, 2018.

[20] Briana B. Morrison, Adrienne Decker, and Lauren E. Margulieux. Learning loops:
A replication study illuminates impact of hs courses. In Proceedings of the 2016
ACM Conference on International Computing Education Research, ICER ’16, pages
221–230, New York, NY, USA, 2016. ACM.

[21] Allison Elliott Tew and Mark Guzdial. The fcs1: a language independent assess-
ment of cs1 knowledge. In Proceedings of the 42nd ACM technical symposium on
Computer science education, pages 111–116. ACM, 2011.

[22] Cynthia Taylor, Daniel Zingaro, Leo Porter, Kevin C Webb, Cynthia Bailey Lee,
and Mike Clancy. Computer science concept inventories: past and future. Com-
puter Science Education, 24(4):253–276, 2014.

Paper Session: CS1 Observations Part 1 CompEd ’19, May 17–19, 2019, Chengdu, Sichuan, China

35

http://goo.gl/j291E0
http://doi.acm.org/10.1145/364447.364581
https://www.kent.ac.uk/ces/tests/computer-test.html
https://www.kent.ac.uk/ces/tests/computer-test.html

[23] Markku Tukiainen and Eero Monkkonen. Programming aptitude testing as a
prediction of learning to program. In Proceedings of PPIG, pages 45–57, 2002.

[24] Miranda C Parker, Mark Guzdial, and Shelly Engleman. Replication, validation,
and use of a language independent cs1 knowledge assessment. In Proceedings

of the 2016 ACM conference on international computing education research, pages
93–101. ACM, 2016.

Paper Session: CS1 Observations Part 1 CompEd ’19, May 17–19, 2019, Chengdu, Sichuan, China

36

	Abstract
	1 Introduction
	2 Related Work
	3 Research Design
	3.1 Participants and Contexts
	3.2 Measurements

	4 Results
	4.1 Descriptive Summary
	4.2 Results of Survey Responses
	4.3 Results of the Programming Aptitude Test
	4.4 Correlation Analysis

	5 Discussion
	5.1 Consistency of Findings
	5.2 Which Measurement Approach is Better?

	6 Limitations and Further Directions
	7 Conclusions
	8 Appendix
	A Programming Aptitude Test
	B Survey
	References

